0

I have a pandas dataframe column that contains a different numbers and each number has a different frequencies. there are 532 to unique value in column. and totally 59000 value are there.

0    135715
1    138775
2    134915
3    134335
4    134555
5    144995
6    136515
7    135185
8    145555
9    135245
...

How can i replace these values somehow corresponding to values in column that starts from 1 to 532. something like this.

0     1
1     2
2     3
3     4
4     5
5     5
6     5
7     6
8     7
9     1
10    1
11    4
... 

I tried np.where() with np.arange() but it raise error.

P. Camilleri
  • 12,664
  • 7
  • 41
  • 76
Reza
  • 728
  • 1
  • 10
  • 28

0 Answers0