I have a large p (~20K) and small n (~500) problem. The first thing I was thinking is dimension reduction. After trying PCA, robust PCA, ICA, removing highly correlated features, I was thinking to use Random Projection. However, there is no simple R implementation of Random Projection.
I have found a few random projection R packages, like
- MCLUST: https://cran.r-project.org/web/packages/mclust/index.html
- RPEnsemble: https://cran.r-project.org/web/packages/RPEnsemble/index.html
But, it seems that they don't support random projection directly for dimension reduction. I have limited knowledge about random projection, but I found two functions in sklearn support this:
Gaussian random projection and Sparse random projection: http://scikit-learn.org/stable/modules/random_projection.html
And it has pretty simple function interface.
Is that possible to implement random projection easily in R? Or, taking advantage of existing tools to do dimension reduction with Random Projection in R?