I've never liked using solvers "blindly", that is, without some sort of decent initial value selection scheme. In my experience, the values you will find when doing things blindly, will be without context as well. Meaning, you'll often miss solutions, think something is a solution while in reality the solver exploded, etc.
For this particular case, it is important to realize that fzero
uses numerical derivatives to find increasingly better approximations. But, derivatives for f(x) = x · tan(x) - 1
get increasingly difficult to accurately compute for increasing x
:

As you can see, the larger x
becomes, the better f(x)
approximates a vertical line; fzero
will simply explode! Therefore it is imperative to get an estimate as closely to the solution as possible before even entering fzero
.
So, here's a way to get good initial values.
Consider the function
f(x) = x · tan(x) - 1
Knowing that tan(x)
has Taylor expansion:
tan(x) ≈ x + (1/3)·x³ + (2/15)·x⁵ + (7/315)·x⁷ + ...
we can use that to approximate the function f(x)
. Truncating after the second term, we can write:
f(x) ≈ x · (x + (1/3)·x³) - 1
Now, key to realize is that tan(x)
repeats with period π
. Therefore, it is most useful to consider the family of functions:
fₙ(x) ≈ x · ( (x - n·π) + (1/3)·(x - n·π)³) - 1
Evaluating this for a couple of multiples and collecting terms gives the following generalization:
f₀(x) = x⁴/3 - 0π·x³ + ( 0π² + 1)x² - (0π + (0π³)/3)·x - 1
f₁(x) = x⁴/3 - 1π·x³ + ( 1π² + 1)x² - (1π + (1π³)/3)·x - 1
f₂(x) = x⁴/3 - 2π·x³ + ( 4π² + 1)x² - (2π + (8π³)/3)·x - 1
f₃(x) = x⁴/3 - 3π·x³ + ( 9π² + 1)x² - (3π + (27π³)/3)·x - 1
f₄(x) = x⁴/3 - 4π·x³ + (16π² + 1)x² - (4π + (64π³)/3)·x - 1
⋮
fₙ(x) = x⁴/3 - nπ·x³ + (n²π² + 1)x² - (nπ + (n³π³)/3)·x - 1
Implementing all this in a simple MATLAB test:
% Replace this with the whole number of pi's you want to
% use as offset
n = 5;
% The coefficients of the approximating polynomial for this offset
C = @(npi) [1/3
-npi
npi^2 + 1
-npi - npi^3/3
-1];
% Find the real, positive polynomial roots
R = roots(C(n*pi));
R = R(imag(R)==0);
R = R(R > 0);
% And use these as initial values for fzero()
x_npi = fzero(@(x) x.*tan(x) - 1, R)
In a loop, this can produce the following table:
% Estimate (polynomial) Solution (fzero)
0.889543617524132 0.860333589019380 0·π
3.425836967935954 3.425618459481728 1·π
6.437309348195653 6.437298179171947 2·π
9.529336042900365 9.529334405361963 3·π
12.645287627956868 12.645287223856643
15.771285009691695 15.771284874815882
18.902410011613000 18.902409956860023
22.036496753426441 22.036496727938566 ⋮
25.172446339768143 25.172446326646664
28.309642861751708 28.309642854452012
31.447714641852869 31.447714637546234
34.586424217960058 34.586424215288922 11·π
As you can see, the approximant is basically equal to the solution. Corresponding plot:
