4

I have obtained the means and sigmas of 3d Gaussian distribution, then I want to plot the 3d distribution with python code, and obtain the distribution figure.

Nikos Tavoularis
  • 2,843
  • 1
  • 30
  • 27
Fengling
  • 51
  • 1
  • 1
  • 3

1 Answers1

8

This is based on documentation of mpl_toolkits and an answer on SO based on scipy multinormal pdf:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

import numpy as np
from scipy.stats import multivariate_normal

x, y = np.mgrid[-1.0:1.0:30j, -1.0:1.0:30j]

# Need an (N, 2) array of (x, y) pairs.
xy = np.column_stack([x.flat, y.flat])

mu = np.array([0.0, 0.0])

sigma = np.array([.5, .5])
covariance = np.diag(sigma**2)

z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)

# Reshape back to a (30, 30) grid.
z = z.reshape(x.shape)





fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')



ax.plot_surface(x,y,z)
#ax.plot_wireframe(x,y,z)

plt.show()

reference:-

  1. Generating 3D Gaussian distribution in Python

  2. https://matplotlib.org/tutorials/toolkits/mplot3d.html#sphx-glr-tutorials-toolkits-mplot3d-py

Nikos Tavoularis
  • 2,843
  • 1
  • 30
  • 27
Anoopjk
  • 103
  • 4
  • 1
    Not to be pedantic, but doesn't "3D Gaussian Distribution" imply that the input is 3D? This and the other SO question you linked treat 2D gaussian distributions... – jtb Dec 02 '21 at 16:58