Consider the following lists short_list
and long_list
short_list = list('aaabaaacaaadaaac')
np.random.seed([3,1415])
long_list = pd.DataFrame(
np.random.choice(list(ascii_letters),
(10000, 2))
).sum(1).tolist()
How do I calculate the cumulative count by unique value?
I want to use numpy and do it in linear time. I want this to compare timings with my other methods. It may be easiest to illustrate with my first proposed solution
def pir1(l):
s = pd.Series(l)
return s.groupby(s).cumcount().tolist()
print(np.array(short_list))
print(pir1(short_list))
['a' 'a' 'a' 'b' 'a' 'a' 'a' 'c' 'a' 'a' 'a' 'd' 'a' 'a' 'a' 'c']
[0, 1, 2, 0, 3, 4, 5, 0, 6, 7, 8, 0, 9, 10, 11, 1]
I've tortured myself trying to use np.unique
because it returns a counts array, an inverse array, and an index array. I was sure I could these to get at a solution. The best I got is in pir4
below which scales in quadratic time. Also note that I don't care if counts start at 1 or zero as we can simply add or subtract 1.
Below are some of my attempts (none of which answer my question)
%%cython
from collections import defaultdict
def get_generator(l):
counter = defaultdict(lambda: -1)
for i in l:
counter[i] += 1
yield counter[i]
def pir2(l):
return [i for i in get_generator(l)]
def pir3(l):
return [i for i in get_generator(l)]
def pir4(l):
unq, inv = np.unique(l, 0, 1, 0)
a = np.arange(len(unq))
matches = a[:, None] == inv
return (matches * matches.cumsum(1)).sum(0).tolist()