I am trying to use paddle-paddle
(https://github.com/baidu/Paddle) to train a (encoder-decoder) sequence to sequence model for POS tagging.
But instead of using a one-hot embedding of the word indices as input, I would be using an imaginary word vectors that I've created using numpy
. I have added the word vectors to the settings
variable in the hook()
function of the dataprovider.py
:
def hook(settings, src_dict, trg_dict, file_list, **kwargs):
# job_mode = 1: training mode
# job_mode = 0: generating mode
settings.job_mode = trg_dict is not None
settings.src_dict = src_dict
settings.logger.info("src dict len : %d" % (len(settings.src_dict)))
settings.sample_count = 0
settings.thematrix = np.random.rand(len(src_dict), len(trg_dict))
if settings.job_mode:
settings.trg_dict = trg_dict
settings.slots = [
#integer_value_sequence(len(settings.src_dict)),
dense_vector_sequence(len(settings.src_dict)),
integer_value_sequence(len(settings.trg_dict)),
integer_value_sequence(len(settings.trg_dict)),
]
settings.logger.info("trg dict len : %d" % (len(settings.trg_dict)))
else:
settings.slots = [
integer_value_sequence(len(settings.src_dict)),
integer_value_sequence(len(open(file_list[0], "r").readlines()))
]
And when iterating through the sentences and their POS tags, I've yielded these imaginary vectors instead of the word indices at https://github.com/alvations/rowrow/blob/master/dataprovider.py#L66
Within the sequence to sequence model, since the input (aka data_layer()
) isn't a one-hot embedding, I would not be using the embedding layer to wrap around the one-hot vector. But instead I'll be using the fully connected layer to squeeze the vector inputs into the encoder size, i.e. https://github.com/alvations/rowrow/blob/master/seqToseq_net.py#L49:
src_word_id = data_layer(name='source_language_word', size=source_dict_dim)
src_embedding = fc_layer(input=src_word_id, size=word_vector_dim)
src_forward = simple_gru(input=src_embedding, size=encoder_size)
src_backward = simple_gru(input=src_embedding, size=encoder_size, reverse=True)
encoded_vector = concat_layer(input=[src_forward, src_backward])
with mixed_layer(size=decoder_size) as encoded_proj:
encoded_proj += full_matrix_projection(input=encoded_vector)
Usually, the embedding layer would be something like:
src_embedding = embedding_layer(
input=src_word_id,
size=word_vector_dim,
param_attr=ParamAttr(name='_source_language_embedding'))
The neural network computation graph seems to be correct since it didn't throw any network related error when running the train.sh
.
But it throws an error when fetching the next batch:
~/Paddle/demo/rowrow$ bash train.sh
I1104 18:59:42.636052 18632 Util.cpp:151] commandline: /home/ltan/Paddle/binary/bin/../opt/paddle/bin/paddle_trainer --config=train.conf --save_dir=/home/ltan/Paddle/demo/rowrow/model --use_gpu=true --num_passes=100 --show_parameter_stats_period=1000 --trainer_count=4 --log_period=10 --dot_period=5
I1104 18:59:46.503566 18632 Util.cpp:126] Calling runInitFunctions
I1104 18:59:46.503810 18632 Util.cpp:139] Call runInitFunctions done.
[WARNING 2016-11-04 18:59:46,847 default_decorators.py:40] please use keyword arguments in paddle config.
[INFO 2016-11-04 18:59:46,856 networks.py:1125] The input order is [source_language_word, target_language_word, target_language_next_word]
[INFO 2016-11-04 18:59:46,857 networks.py:1132] The output order is [__cost_0__]
I1104 18:59:46.871026 18632 Trainer.cpp:170] trainer mode: Normal
I1104 18:59:46.871906 18632 MultiGradientMachine.cpp:108] numLogicalDevices=1 numThreads=4 numDevices=4
I1104 18:59:46.988584 18632 PyDataProvider2.cpp:247] loading dataprovider dataprovider::process
[INFO 2016-11-04 18:59:46,990 dataprovider.py:15] src dict len : 45661
[INFO 2016-11-04 18:59:47,316 dataprovider.py:26] trg dict len : 422
I1104 18:59:47.347944 18632 PyDataProvider2.cpp:247] loading dataprovider dataprovider::process
[INFO 2016-11-04 18:59:47,348 dataprovider.py:15] src dict len : 45661
[INFO 2016-11-04 18:59:47,657 dataprovider.py:26] trg dict len : 422
I1104 18:59:47.658279 18632 GradientMachine.cpp:134] Initing parameters..
I1104 18:59:49.244287 18632 GradientMachine.cpp:141] Init parameters done.
F1104 18:59:50.485621 18632 PythonUtil.h:213] Check failed: PySequence_Check(seq_)
*** Check failure stack trace: ***
@ 0x7f71f521adaa (unknown)
@ 0x7f71f521ace4 (unknown)
@ 0x7f71f521a6e6 (unknown)
@ 0x7f71f521d687 (unknown)
@ 0x54dac9 paddle::DenseScanner::fill()
@ 0x54f1d1 paddle::SequenceScanner::fill()
@ 0x5543cc paddle::PyDataProvider2::getNextBatchInternal()
@ 0x5779b2 paddle::DataProvider::getNextBatch()
@ 0x6a01f7 paddle::Trainer::trainOnePass()
@ 0x6a3b57 paddle::Trainer::train()
@ 0x53a2b3 main
@ 0x7f71f4426f45 (unknown)
@ 0x545ae5 (unknown)
@ (nil) (unknown)
/home/ltan/Paddle/binary/bin/paddle: line 81: 18632 Aborted (core dumped) ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2}
I've tried asking on Paddle's gitter.im but there's no response.
Does anyone know:
- what does the error mean?
- how to feed a dense vector sequence into a seqToseq model in Paddle?
- Why is Paddle throwing this error when feeding in a dense_vector_sequence to a SeqToseq model?