I have following list that I would like to perform unsupervised learning on and use the knowledge to predict a value for each item in the test list
#Format [real_runtime, processors, requested_time, score, more_to_be_added]
#some entries from the list
Training dataset
Xsrc = [['354', '2048', '3600', '53.0521472395'],
['605', '2048', '600', '54.8768871369'],
['128', '2048', '600', '51.0'],
['136', '2048', '900', '51.0000000563'],
['19218', '480', '21600', '51.0'],
['15884', '2048', '18000', '51.0'],
['118', '2048', '1500', '51.0'],
['103', '2048', '2100', '51.0000002839'],
['18542', '480', '21600', '51.0000000001'],
['13272', '2048', '18000', '51.0000000001']]
Test data set
Using the clusters I would like to predict the real_runtime of a new list: Xtest= [['-1', '2048', '1500', '51.0000000161'], ['-1', '2048', '10800', '51.0000000002'], ['-1', '512', '21600', '-1'], ['-1', '512', '2700', '51.0000000004'], ['-1, '1024', '21600', '51.1042617556']]
Code: Formatting the list and Making clusters using scikit in python and plotting the clusters
from sklearn.feature_selection import VarianceThreshold
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
##Training dataset
Xsrc = [['354', '2048', '3600', '53.0521472395'],
['605', '2048', '600', '54.8768871369'],
['128', '2048', '600', '51.0'],
['136', '2048', '900', '51.0000000563'],
['19218', '480', '21600', '51.0'],
['15884', '2048', '18000', '51.0'],
['118', '2048', '1500', '51.0'],
['103', '2048', '2100', '51.0000002839'],
['18542', '480', '21600', '51.0000000001'],
['13272', '2048', '18000', '51.0000000001']]
print "Xsrc:", Xsrc
##Test data set
Xtest= [['1224', '2048', '1500', '51.0000000161'],
['7867', '2048', '10800', '51.0000000002'],
['21594', '512', '21600', '-1'],
['1760', '512', '2700', '51.0000000004'],
['115', '1024', '21600', '51.1042617556']]
##Clustering
X = StandardScaler().fit_transform(Xsrc)
db = DBSCAN(min_samples=2).fit(X) #no clustering parameter, such as default eps
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
clusters = [X[labels == i] for i in xrange(n_clusters_)]
print('Estimated number of clusters: %d' % n_clusters_)
print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels))
##Plotting the dataset
unique_labels = set(labels)
colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = 'k'
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=20)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,
markeredgecolor='k', markersize=10)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
Any ideas how I can use the clusters to predict the value?