I have made this program for shortest path in a bidirectional graph using dijkstra's algorithm. Can this algorithm be converted to a program to find the longest path in the graph.
#include<bits/stdc++.h>
using namespace std;
#define mp make_pair
#define ft first
#define sd second
vector< pair<long long int,long long int> > g[101000];
long long int n,m;
vector<long long int> dist;
vector <long long int> vis;
void dijkstra(long long int source,long long int l)
{
dist.clear();
long long int i,j,k;
for(i=0;i<n;i++)
{
dist.push_back(INT_MAX);
vis.push_back(0);
}
dist[source] = 0;
set< pair<long long int,long long int> > s; // pair is dist, node_number
set< pair<long long int,long long int> >::iterator it;
for(i=0;i<n;i++)
s.insert(mp(dist[i],i));
while(!s.empty())
{
it = s.begin();
pair<long long int,long long int> temp = *it;
s.erase(temp); // remove minimum val node
long long int cur = temp.sd;
long long int val = temp.ft;
if(val == INT_MAX)
return;
for(i=0;i<g[cur].size();i++)
{
long long int nb = g[cur][i].ft;
if(!vis[nb] && dist[nb] > val + g[cur][i].sd)
{
s.erase(mp(dist[nb],nb)); // erase old val
dist[nb] = val + g[cur][i].sd;
s.insert(mp(dist[nb],nb));
}
}
}
for(int i=0;i<n;i++)
{
cout<<dist[i]<<" ";
}
cout<<endl;
}
int main()
{
long long int i,j,k;
dist.clear();
vis.clear();
long long int x,y,z;
cin>>n>>m;
for(i=0;i<m;i++)
g[i].clear();
for(i=0;i<m;i++)
{
cin>>x>>y>>z;
x--; y--;
g[x].push_back(mp(y,z));
g[y].push_back(mp(x,z));
}
dijkstra(0,n-1);
return 0;
}
Basically i have is probabilities instead of path cost, so i want is the path with max probability. How can i go about achieving this.