I built a SparkStreaming App that fetches content from A Kafka Queue and intends to put the data into a MySQL table after some pre-processing and structuring.
I call the 'foreachRDD' method on the SparkStreamingContext. The issue that I'm facing is that there's dataloss between when I call saveAsTextFile on the RDD and DataFrame's write method with format("csv"). I can't seem to pin point why this is happening.
val ssc = new StreamingContext(spark.sparkContext, Seconds(60))
ssc.checkpoint("checkpoint")
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
val stream = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
stream.foreachRDD {
rdd => {
rdd.saveAsTextFile("/Users/jarvis/rdds/"+new SimpleDateFormat("hh-mm-ss-dd-MM-yyyy").format(new Date)+"_rdd")
import spark.implicits._
val messagesDF = rdd.map(_.split("\t")).map( w => { Record ( w(0), autoTag( w(1),w(4) ) , w(2), w(3), w(4), w(5).substring(w(5).lastIndexOf("http://")), w(6).split("\n")(0) )}).toDF("recordTS","tag","channel_url","title","description","link","pub_TS")
messagesDF.write.format("csv").save(dumpPath+new SimpleDateFormat("hh-mm-ss-dd-MM-yyyy").format(new Date)+"_DF")
}
}
ssc.start()
ssc.awaitTermination()
There's data loss ie Many rows don't make it to the DataFrame from the RDD. There's also replication: Many rows that do reach the Dataframe are replicated many times.