This is the code I have so far. I am performing a weighted least squares operation, and am printing the results out. I want to use the results from the summary, but the summary is apparently not iterable. Is there a way to pull the values from the summary?
self.b = np.linalg.lstsq(self.G,self.d)
w = np.asarray(self.dw)
mod_wls = sm.WLS(self.d,self.G,weights=1./np.asarray(w))
res_wls = mod_wls.fit()
report = res_wls.summary()
print report
Here is the summary as it prints out.
WLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.955
Model: WLS Adj. R-squared: 0.944
Method: Least Squares F-statistic: 92.82
Date: Mon, 24 Oct 2016 Prob (F-statistic): 4.94e-14
Time: 11:38:16 Log-Likelihood: 138.19
No. Observations: 28 AIC: -264.4
Df Residuals: 22 BIC: -256.4
Df Model: 5
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 -0.0066 0.001 -12.389 0.000 -0.008 -0.006
x2 0.0072 0.000 15.805 0.000 0.006 0.008
x3 1.853e-08 2.45e-08 0.756 0.457 -3.23e-08 6.93e-08
x4 -4.402e-09 6.58e-09 -0.669 0.511 -1.81e-08 9.25e-09
x5 -3.595e-08 1.42e-08 -2.528 0.019 -6.55e-08 -6.45e-09
x6 4.402e-09 6.58e-09 0.669 0.511 -9.25e-09 1.81e-08
x7 -6.759e-05 4.17e-05 -1.620 0.120 -0.000 1.9e-05
==============================================================================
Omnibus: 4.421 Durbin-Watson: 1.564
Prob(Omnibus): 0.110 Jarque-Bera (JB): 2.846
Skew: 0.729 Prob(JB): 0.241
Kurtosis: 3.560 Cond. No. 2.22e+16
==============================================================================
edit: To clarify, I want to extract the 'std err' values from each of the x1,x2...x7 rows. I can't seem to find the attribute that represents them or the rows they are in. Anyone know how to do this?