I am trying to find the coefficients in an equation to model the step response of a motor which is of the form 1-e^x
. The equation I'm using to model is of the form
a(1)*t^2 + a(2)*t^3 + a(3)*t^3 + ...
(It is derived in a research paper used to solve for motor parameters)
Sometimes using fminunc
to find the coefficients works out okay, and I get a good result, and it matches the training data fairly well. Other times the returned coefficients are horrible (going extremely higher than what the output should be and is orders of magnitude off). This especially happens once I started using higher order terms: using any model that uses x^8
or higher (x^9
, x^10
, x^11
, etc.) always produces bad results.
Since it works sometimes, I can't think why my implementation would be wrong. I have tried fminunc
while providing the gradients and while also not providing the gradients yet there is no difference. I've looked into using other functions to solve for the coefficients, like polyfit
, but in that instance it has to have terms that are raised from 1
to the highest order term, but the model I'm using has its lowest power at 2
.
Here is the main code:
clear;
%Overall Constants
max_power = 7;
%Loads in data
%data = load('TestData.txt');
load testdata.mat
%Sets data into variables
indep_x = data(:,1); Y = data(:,2);
%number of data points
m = length(Y);
%X is a matrix with the independant variable
exps = [2:max_power];
X_prime = repmat(indep_x, 1, max_power-1); %Repeats columns of the indep var
X = bsxfun(@power, X_prime, exps);
%Initializes theta to rand vals
init_theta = rand(max_power-1,1);
%Sets up options for fminunc
options = optimset( 'MaxIter', 400, 'Algorithm', 'quasi-newton');
%fminunc minimizes the output of the cost function by changing the theta paramaeters
[theta, cost] = fminunc(@(t)(costFunction(t, X, Y)), init_theta, options)
%
Y_line = X * theta;
figure;
hold on; plot(indep_x, Y, 'or');
hold on; plot(indep_x, Y_line, 'bx');
And here is costFunction
:
function [J, Grad] = costFunction (theta, X, Y)
%# of training examples
m = length(Y);
%Initialize Cost and Grad-Vector
J = 0;
Grad = zeros(size(theta));
%Poduces an output based off the current values of theta
model_output = X * theta;
%Computes the squared error for each example then adds them to get the total error
squared_error = (model_output - Y).^2;
J = (1/(2*m)) * sum(squared_error);
%Computes the gradients for each theta t
for t = 1:size(theta, 1)
Grad(t) = (1/m) * sum((model_output-Y) .* X(:, t));
end
endfunction
Any help or advice would be appreciated.