Those codes are all in-efficient, in many ways, first of all you do not need to iterate for all co-prime reminders of n, you need to check only for powers that are dividers of Euler's function from n. In the case n is prime Euler's function is n-1. If n i prime, you need to factorize n-1 and make check with only those dividers, not all. There is a simple mathematics behind this.
Second. You need better function for powering a number imagine the power is too big, I think in python you have the function pow(g, powers, modulo) which at each steps makes division and getting the remainder only ( _ % modulo ).
If you are going to implement the Diffie-Hellman algorithm it is better to use safe primes. They are such primes that p is a prime and 2p+1 is also prime, so that 2p+1 is called safe prime. If you get n = 2*p+1, then the dividers for that n-1 (n is prime, Euler's function from n is n-1) are 1, 2, p and 2p, you need to check only if the number g at power 2 and g at power p if one of them gives 1, then that g is not primitive root, and you can throw that g away and select another g, the next one g+1, If g^2 and g^p are non equal to 1 by modulo n, then that g is a primitive root, that check guarantees, that all powers except 2p would give numbers different from 1 by modulo n.
The example code uses Sophie Germain prime p and the corresponding safe prime 2p+1, and calculates primitive roots of that safe prime 2p+1.
You can easily re-work the code for any prime number or any other number, by adding a function to calculate Euler's function and to find all divisors of that value. But this is only a demo not a complete code. And there might be better ways.
class SGPrime :
'''
This object expects a Sophie Germain prime p, it does not check that it accept that as input.
Euler function from any prime is n-1, and the order (see method get_order) of any co-prime
remainder of n could be only a divider of Euler function value.
'''
def __init__(self, pSophieGermain ):
self.n = 2*pSophieGermain+1
#TODO! check if pSophieGermain is prime
#TODO! check if n is also prime.
#They both have to be primes, elsewhere the code does not work!
# Euler's function is n-1, #TODO for any n, calculate Euler's function from n
self.elrfunc = self.n-1
# All divisors of Euler's function value, #TODO for any n, get all divisors of the Euler's function value.
self.elrfunc_divisors = [1, 2, pSophieGermain, self.elrfunc]
def get_order(self, r):
'''
Calculate the order of a number, the minimal power at which r would be congruent with 1 by modulo p.
'''
r = r % self.n
for d in self.elrfunc_divisors:
if ( pow( r, d, self.n) == 1 ):
return d
return 0 # no such order, not possible if n is prime, - see small Fermat's theorem
def is_primitive_root(self, r):
'''
Check if r is a primitive root by modulo p. Such always exists if p is prime.
'''
return ( self.get_order(r) == self.elrfunc )
def find_all_primitive_roots(self, max_num_of_roots = None):
'''
Find all primitive roots, only for demo if n is large the list is large for DH or any other such algorithm
better to stop at first primitive roots.
'''
primitive_roots = []
for g in range(1, self.n):
if ( self.is_primitive_root(g) ):
primitive_roots.append(g)
if (( max_num_of_roots != None ) and (len(primitive_roots) >= max_num_of_roots)):
break
return primitive_roots
#demo, Sophie Germain's prime
p = 20963
sggen = SGPrime(p)
print (f"Safe prime : {sggen.n}, and primitive roots of {sggen.n} are : " )
print(sggen.find_all_primitive_roots())
Regards