You don't necessarily need service context to interact with HDFS. You can simply broadcast the hadoop configuration from master and use the broadcasted configuration value on executors to construct a hadoop.fs.FileSystem
. Then the world is your. :)
Following is the code:
import java.io.StringWriter
import com.sachin.util.SparkIndexJobHelper._
import org.apache.commons.io.IOUtils
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SerializableWritable, SparkConf}
class Test {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setMaster("local[15]")
.setAppName("TestJob")
val sc = createSparkContext(conf)
val confBroadcast = sc.broadcast(new SerializableWritable(sc.hadoopConfiguration))
val rdd: RDD[String] = ??? // your existing rdd
val filedata_rdd = rdd.map { x => readFromHDFS(confBroadcast.value.value, x) }
}
def readFromHDFS(configuration: Configuration, path: String): String = {
val fs: FileSystem = FileSystem.get(configuration)
val inputStream = fs.open(new Path(path));
val writer = new StringWriter();
IOUtils.copy(inputStream, writer, "UTF-8");
writer.toString();
}
}