Finding the chromatic number of a graph is an NP-Hard problem, so there isn't a fast solver 'in theory'. Is there any publicly available software that can compute the exact chromatic number of a graph quickly?
I'm writing a Python script that computes the chromatic number of many graphs, but it is taking too long for even small graphs. The graphs I am working with a wide range of graphs that can be sparse or dense but usually less than 10,000 nodes. I formulated the problem as an integer program and passed it to Gurobi to solve. Do you have recommendations for software, different IP formulations, or different Gurobi settings to speed this up?
import networkx as nx
from gurobipy import *
# create test graph
n = 50
p = 0.5
G = nx.erdos_renyi_graph(n, p)
# compute chromatic number -- ILP solve
m = Model('chrom_num')
# get maximum number of variables necessary
k = max(nx.degree(G).values()) + 1
# create k binary variables, y_0 ... y_{k-1} to indicate whether color k is used
y = []
for j in range(k):
y.append(m.addVar(vtype=GRB.BINARY, name='y_%d' % j, obj=1))
# create n * k binary variables, x_{l,j} that is 1 if node l is colored with j
x = []
for l in range(n):
x.append([])
for j in range(k):
x[-1].append(m.addVar(vtype=GRB.BINARY, name='x_%d_%d' % (l, j), obj=0))
# objective function is minimize colors used --> sum of y_0 ... y_{k-1}
m.setObjective(GRB.MINIMIZE)
m.update()
# add constraint -- each node gets exactly one color (sum of colors used is 1)
for u in range(n):
m.addConstr(quicksum(x[u]) == 1, name='NC_%d' % u)
# add constraint -- keep track of colors used (y_j is set high if any time j is used)
for u in range(n):
for j in range(k):
m.addConstr(x[u][j] <= y[j], name='SH_%d_%d' % (u,j))
# add constraint -- adjacent nodes have different colors
for u in range(n):
for v in G[u]:
if v > u:
for j in range(k):
m.addConstr(x[u][j] + x[v][j] <= 1, name='ADJ_%d_%d_COL_%d' % (u,v,j))
# update model, solve, return the chromatic number
m.update()
m.optimize()
chrom_num = m.objVal
I am looking to compute exact chromatic numbers although I would be interested in algorithms that compute approximate chromatic numbers if they have reasonable theoretical guarantees such as constant factor approximation, etc.