I'm trying to train a sequence to sequence model using tensorflow. I see that in the tutorials, buckets help speed up training. So far I'm able to train using just one bucket, and also using just one gpu and multiple buckets using more or less out of the box code, but when I try to use multiple buckets with multiple gpus, I get an error stating Invalid argument: You must feed a value for placeholder tensor 'gpu_scope_0/encoder50_gpu0' with dtype int32
From the error, I can tell that I'm not declaring the input_feed correctly, so it is expecting the input to be of the size of the largest bucket every time. I'm confused about why this is the case, though, because in the examples that I'm adapting, it does the same thing when initializing the placeholders for the input_feed. As far as I can tell, the tutorials also initialize up to the largest sized bucket, but this error doesn't happen when I use the tutorials' code.
The following is what I think is the relevant initialization code:
self.encoder_inputs = [[] for _ in xrange(self.num_gpus)]
self.decoder_inputs = [[] for _ in xrange(self.num_gpus)]
self.target_weights = [[] for _ in xrange(self.num_gpus)]
self.scope_prefix = "gpu_scope"
for j in xrange(self.num_gpus):
with tf.device("/gpu:%d" % (self.gpu_offset + j)):
with tf.name_scope('%s_%d' % (self.scope_prefix, j)) as scope:
for i in xrange(buckets[-1][0]): # Last bucket is the biggest one.
self.encoder_inputs[j].append(tf.placeholder(tf.int32, shape=[None],
name="encoder{0}_gpu{1}".format(i,j)))
for i in xrange(buckets[-1][1] + 1):
self.decoder_inputs[j].append(tf.placeholder(tf.int32, shape=[None],
name="decoder{0}_gpu{1}".format(i,j)))
self.target_weights[j].append(tf.placeholder(tf.float32, shape=[None],
name="weight{0}_gpu{1}".format(i,j)))
# Our targets are decoder inputs shifted by one.
self.losses = []
self.outputs = []
# The following loss computation creates the neural network. The specified
# device hosts the trainable tf parameters.
bucket = buckets[0]
i = 0
with tf.device(param_device):
output, loss = tf.nn.seq2seq.model_with_buckets(self.encoder_inputs[i], self.decoder_inputs[i],
[self.decoder_inputs[i][k + 1] for k in
xrange(len(self.decoder_inputs[i]) - 1)],
self.target_weights[0], buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=self.softmax_loss_function)
bucket = buckets[0]
self.encoder_states = []
with tf.device('/gpu:%d' % self.gpu_offset):
with variable_scope.variable_scope(variable_scope.get_variable_scope(),
reuse=True):
self.encoder_outputs, self.encoder_states = get_encoder_outputs(self,
self.encoder_inputs[0])
if not forward_only:
self.grads = []
print ("past line 297")
done_once = False
for i in xrange(self.num_gpus):
with tf.device("/gpu:%d" % (self.gpu_offset + i)):
with tf.name_scope("%s_%d" % (self.scope_prefix, i)) as scope:
with variable_scope.variable_scope(variable_scope.get_variable_scope(), reuse=True):
#for j, bucket in enumerate(buckets):
output, loss = tf.nn.seq2seq.model_with_buckets(self.encoder_inputs[i],
self.decoder_inputs[i],
[self.decoder_inputs[i][k + 1] for k in
xrange(len(self.decoder_inputs[i]) - 1)],
self.target_weights[i], buckets,
lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=self.softmax_loss_function)
self.losses.append(loss)
self.outputs.append(output)
# Training outputs and losses.
if forward_only:
self.outputs, self.losses = tf.nn.seq2seq.model_with_buckets(
self.encoder_inputs, self.decoder_inputs,
[self.decoder_inputs[0][k + 1] for k in xrange(buckets[0][1])],
self.target_weights, buckets, lambda x, y: seq2seq_f(x, y, True),
softmax_loss_function=self.softmax_loss_function)
# If we use output projection, we need to project outputs for decoding.
if self.output_projection is not None:
for b in xrange(len(buckets)):
self.outputs[b] = [
tf.matmul(output, self.output_projection[0]) + self.output_projection[1]
for output in self.outputs[b]
]
else:
self.bucket_grads = []
self.gradient_norms = []
params = tf.trainable_variables()
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
self.updates = []
with tf.device(aggregation_device):
for g in xrange(self.num_gpus):
for b in xrange(len(buckets)):
gradients = tf.gradients(self.losses[g][b], params)
clipped_grads, norm = tf.clip_by_global_norm(gradients, max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(
opt.apply_gradients(zip(clipped_grads, params), global_step=self.global_step))
and the following is the relevant code when feeding in data:
input_feed = {}
for i in xrange(self.num_gpus):
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[i][l].name] = encoder_inputs[i][l]
for l in xrange(decoder_size):
input_feed[self.decoder_inputs[i][l].name] = decoder_inputs[i][l]
input_feed[self.target_weights[i][l].name] = target_weights[i][l]
# Since our targets are decoder inputs shifted by one, we need one more.
last_target = self.decoder_inputs[i][decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
last_weight = self.target_weights[i][decoder_size].name
input_feed[last_weight] = np.zeros([self.batch_size], dtype=np.float32)
# Output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [self.updates[bucket_id], self.gradient_norms[bucket_id], self.losses[bucket_id]]
else:
output_feed = [self.losses[bucket_id]] # Loss for this batch.
for l in xrange(decoder_size): # Output logits.
output_feed.append(self.outputs[0][l])
Right now I'm considering just padding every input up to the bucket size, but I expect that this would lose some of the advantages of bucketing