I have a numpy array say
a = array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
I have an array 'replication' of the same size where replication[i,j](>=0) denotes how many times a[i][j] should be repeated along the row. Obiviously, replication array follows the invariant that np.sum(replication[i]) have the same value for all i. For example, if
replication = array([[1, 2, 1],
[1, 1, 2],
[2, 1, 1]])
then the final array after replicating is:
new_a = array([[1, 2, 2, 3],
[4, 5, 6, 6],
[7, 7, 8, 9]])
Presently, I am doing this to create new_a:
##allocate new_a
h = a.shape[0]
w = a.shape[1]
for row in range(h):
ll = [[a[row][j]]*replicate[row][j] for j in range(w)]
new_a[row] = np.array([item for sublist in ll for item in sublist])
However, this seems to be too slow as it involves using lists. Can I do the intended entirely in numpy, without the use of python lists?