4

How to do this in Numpy : Thank you!

Input :

A = np.array([0, 1, 2, 3]) 

B = np.array([[3, 2, 0], [0, 2, 1], [2, 3, 1], [3, 0, 1]]) 

Output :

result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]

in Python :

A = np.array([0 ,1 ,2 ,3]) 
B = np.array([[3 ,2 ,0], [0 ,2 ,1], [2 ,3 ,1], [3 ,0 ,1]]) 
result = []
for x ,  valA in enumerate (A) :
    inArray = []
    for y , valB in enumerate (B) : 
        if valA in valB:
            inArray.append (y)
    result.append (inArray)
print result

# result = [[0, 1, 3], [1, 2, 3], [0, 1, 2], [0, 2, 3]]
gabra
  • 9,484
  • 4
  • 29
  • 45
Helihallow
  • 57
  • 6

2 Answers2

5

Approach #1

Here's a NumPy vectorized approach using broadcasting -

R,C = np.where((A[:,None,None] == B).any(-1))
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)

Approach #2

Assuming A and B to hold positive numbers, we can consider those to represent indices on a 2D grid, such that B could be considered to hold the column indices on per row basis. Once that 2D grid corresponding to B is in place, we just need to consider only the columns that are intersected by A. Finally, we get the indices of True values in a such a 2D grid to give us R and C values. This should be much more memory-efficient.

Thus, the alternative approach would look something like this -

ncols = B.max()+1
nrows = B.shape[0]
mask = np.zeros((nrows,ncols),dtype=bool)
mask[np.arange(nrows)[:,None],B] = 1
mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
R,C = np.where(mask.T)
out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)

Sample run -

In [43]: A
Out[43]: array([0, 1, 2, 3])

In [44]: B
Out[44]: 
array([[3, 2, 0],
       [0, 2, 1],
       [2, 3, 1],
       [3, 0, 1]])

In [45]: out
Out[45]: [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]

Runtime test

Scaling up the dataset sizes by 100x, here's a quick runtime test result -

In [85]: def index_1din2d(A,B):
    ...:     R,C = np.where((A[:,None,None] == B).any(-1))
    ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
    ...:     return out
    ...: 
    ...: def index_1din2d_initbased(A,B):
    ...:     ncols = B.max()+1
    ...:     nrows = B.shape[0]
    ...:     mask = np.zeros((nrows,ncols),dtype=bool)
    ...:     mask[np.arange(nrows)[:,None],B] = 1
    ...:     mask[:,~np.in1d(np.arange(mask.shape[1]),A)] = 0
    ...:     R,C = np.where(mask.T)
    ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
    ...:     return out
    ...: 

In [86]: A = np.unique(np.random.randint(0,10000,(400)))
    ...: B = np.random.randint(0,10000,(400,300))
    ...: 

In [87]: %timeit [np.where((B == x).sum(axis = 1))[0] for x in A]
1 loop, best of 3: 161 ms per loop # @Psidom's soln

In [88]: %timeit index_1din2d(A,B)
10 loops, best of 3: 91.5 ms per loop

In [89]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 33.4 ms per loop

Further performance-boost!

Well, alternatively we can create the 2D grid in the second approach in a transposed way. The idea is to avoid the transpose in R,C = np.where(mask.T), which seemed like the bottleneck. So, a modified version of the second approach and the associated runtimes would look something like this -

In [135]: def index_1din2d_initbased_v2(A,B):
     ...:     nrows = B.max()+1
     ...:     ncols = B.shape[0]
     ...:     mask = np.zeros((nrows,ncols),dtype=bool)
     ...:     mask[B,np.arange(ncols)[:,None]] = 1
     ...:     mask[~np.in1d(np.arange(mask.shape[0]),A)] = 0
     ...:     R,C = np.where(mask)
     ...:     out = np.split(C,np.flatnonzero(R[1:]>R[:-1])+1)
     ...:     return out
     ...: 

In [136]: A = np.unique(np.random.randint(0,10000,(400)))
     ...: B = np.random.randint(0,10000,(400,300))
     ...: 

In [137]: %timeit index_1din2d_initbased(A,B)
10 loops, best of 3: 57.5 ms per loop

In [138]: %timeit index_1din2d_initbased_v2(A,B)
10 loops, best of 3: 25.9 ms per loop
Divakar
  • 218,885
  • 19
  • 262
  • 358
1

An option with a combination of numpy and list-comprehension:

import numpy as np
[np.where((B == x).sum(axis = 1))[0] for x in A]
# [array([0, 1, 3]), array([1, 2, 3]), array([0, 1, 2]), array([0, 2, 3])]
Psidom
  • 209,562
  • 33
  • 339
  • 356