I am trying to run different regression models on the Prostate cancer data from the lasso2 package. When I use Lasso, I saw two different methods to calculate the mean square error. But they do give me quite different results, so I would want to know if I'm doing anything wrong or if it just means that one method is better than the other ?
# Needs the following R packages.
library(lasso2)
library(glmnet)
# Gets the prostate cancer dataset
data(Prostate)
# Defines the Mean Square Error function
mse = function(x,y) { mean((x-y)^2)}
# 75% of the sample size.
smp_size = floor(0.75 * nrow(Prostate))
# Sets the seed to make the partition reproductible.
set.seed(907)
train_ind = sample(seq_len(nrow(Prostate)), size = smp_size)
# Training set
train = Prostate[train_ind, ]
# Test set
test = Prostate[-train_ind, ]
# Creates matrices for independent and dependent variables.
xtrain = model.matrix(lpsa~. -1, data = train)
ytrain = train$lpsa
xtest = model.matrix(lpsa~. -1, data = test)
ytest = test$lpsa
# Fitting a linear model by Lasso regression on the "train" data set
pr.lasso = cv.glmnet(xtrain,ytrain,type.measure='mse',alpha=1)
lambda.lasso = pr.lasso$lambda.min
# Getting predictions on the "test" data set and calculating the mean square error
lasso.pred = predict(pr.lasso, s = lambda.lasso, newx = xtest)
# Calculating MSE via the mse function defined above
mse.1 = mse(lasso.pred,ytest)
cat("MSE (method 1): ", mse.1, "\n")
# Calculating MSE via the cvm attribute inside the pr.lasso object
mse.2 = pr.lasso$cvm[pr.lasso$lambda == lambda.lasso]
cat("MSE (method 2): ", mse.2, "\n")
So these are the outputs I got for both MSE:
MSE (method 1): 0.4609978
MSE (method 2): 0.5654089
And they're quite different. Does anyone know why ? Thanks a lot in advance for your help!
Samuel