I recently got interested in soccer statistics. Right now I want to implement the famous Dixon-Coles Model in Python 3.5 (paper-link).
The basic problem is, that from the model described in the paper a Likelihood function with numerous parameters results, which needs to be maximized.
For example: The likelihood function for one Bundesliga season would result in 37 parameters. Of course I do the minimization of the corresponding negative log-likelihood function. I know that this log
function is strictly convex so the optimization should not be too difficult. I also included the analytic gradient, but as the number of parameters exceeds ~10 the optimization methods from the SciPy-Package fail (scipy.optimize.minimize()
).
My question: Which other optimization techniques are out there and are mostly suited for optimization problems involving ~40 independent parameters?
Some hints to other methods would be great!