Reading through the documentation (http://snappydatainc.github.io/snappydata/streamingWithSQL/) and had a question about this item:
"Reduced shuffling through co-partitioning: With SnappyData, the partitioning key used by the input queue (e.g., for Kafka sources), the stream processor and the underlying store can all be the same. This dramatically reduces the need to shuffle records."
If we are using Kafka and partition our data in a topic using a key (single value). Is it possible to map this single key from kafka to multiple partition keys identified in the snappy table?
Is there a hash of some sort to turn multiple keys into a single key?
The benefit of reduced shuffling seems significant and trying to understand the best practice here.
thanks!