103

I have the following dataframe:

df = pd.DataFrame([
    (1, 1, 'term1'),
    (1, 2, 'term2'),
    (1, 1, 'term1'),
    (1, 1, 'term2'),
    (2, 2, 'term3'),
    (2, 3, 'term1'),
    (2, 2, 'term1')
], columns=['id', 'group', 'term'])

I want to group it by id and group and calculate the number of each term for this id, group pair.

So in the end I am going to get something like this:

enter image description here

I was able to achieve what I want by looping over all the rows with df.iterrows() and creating a new dataframe, but this is clearly inefficient. (If it helps, I know the list of all terms beforehand and there are ~10 of them).

It looks like I have to group by and then count values, so I tried that with df.groupby(['id', 'group']).value_counts() which does not work because value_counts operates on the groupby series and not a dataframe.

Anyway I can achieve this without looping?

piRSquared
  • 285,575
  • 57
  • 475
  • 624
Salvador Dali
  • 214,103
  • 147
  • 703
  • 753

6 Answers6

171

I use groupby and size

df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)

enter image description here


Timing

enter image description here

1,000,000 rows

df = pd.DataFrame(dict(id=np.random.choice(100, 1000000),
                       group=np.random.choice(20, 1000000),
                       term=np.random.choice(10, 1000000)))

enter image description here

Community
  • 1
  • 1
piRSquared
  • 285,575
  • 57
  • 475
  • 624
29

using pivot_table() method:

In [22]: df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
Out[22]:
term      term1  term2  term3
id group
1  1          2      1      0
   2          0      1      0
2  2          1      0      1
   3          1      0      0

Timing against 700K rows DF:

In [24]: df = pd.concat([df] * 10**5, ignore_index=True)

In [25]: df.shape
Out[25]: (700000, 3)

In [3]: %timeit df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
1 loop, best of 3: 226 ms per loop

In [4]: %timeit df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
1 loop, best of 3: 236 ms per loop

In [5]: %timeit pd.crosstab([df.id, df.group], df.term)
1 loop, best of 3: 355 ms per loop

In [6]: %timeit df.groupby(['id','group','term'])['term'].size().unstack().fillna(0).astype(int)
1 loop, best of 3: 232 ms per loop

In [7]: %timeit df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
1 loop, best of 3: 231 ms per loop

Timing against 7M rows DF:

In [9]: df = pd.concat([df] * 10, ignore_index=True)

In [10]: df.shape
Out[10]: (7000000, 3)

In [11]: %timeit df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)
1 loop, best of 3: 2.27 s per loop

In [12]: %timeit df.pivot_table(index=['id','group'], columns='term', aggfunc='size', fill_value=0)
1 loop, best of 3: 2.3 s per loop

In [13]: %timeit pd.crosstab([df.id, df.group], df.term)
1 loop, best of 3: 3.37 s per loop

In [14]: %timeit df.groupby(['id','group','term'])['term'].size().unstack().fillna(0).astype(int)
1 loop, best of 3: 2.28 s per loop

In [15]: %timeit df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0)
1 loop, best of 3: 1.89 s per loop
MaxU - stand with Ukraine
  • 205,989
  • 36
  • 386
  • 419
26

Instead of remembering lengthy solutions, how about the one that pandas has built in for you:

df.groupby(['id', 'group', 'term']).count()
A.Kot
  • 7,615
  • 2
  • 22
  • 24
  • Maybe this used to work before, but it doesn't return any columns in pandas 1.5.2 – ali bakhtiari Jan 05 '23 at 13:39
  • @alibakhtiari, would love to see what columns your dataframe has, groupby count has been working since python existed and still does. – A.Kot Mar 17 '23 at 15:35
17

You can use crosstab:

print (pd.crosstab([df.id, df.group], df.term))
term      term1  term2  term3
id group                     
1  1          2      1      0
   2          0      1      0
2  2          1      0      1
   3          1      0      0

Another solution with groupby with aggregating size, reshaping by unstack:

df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0)

term      term1  term2  term3
id group                     
1  1          2      1      0
   2          0      1      0
2  2          1      0      1
   3          1      0      0

Timings:

df = pd.concat([df]*10000).reset_index(drop=True)

In [48]: %timeit (df.groupby(['id', 'group', 'term']).size().unstack(fill_value=0))
100 loops, best of 3: 12.4 ms per loop

In [49]: %timeit (df.groupby(['id', 'group', 'term'])['term'].size().unstack(fill_value=0))
100 loops, best of 3: 12.2 ms per loop
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252
  • 1
    wow wow wow, you are amazing. And it took you only 3 minutes (the same time it took me to write a loop, and less time then it took me to write this question). I would really appreciate if you can write some explanation of why this works, but most probably I will be able to understand it by myself in a few minutes. – Salvador Dali Aug 24 '16 at 20:53
  • In your case `crosstab` is better as `pivot_table`, because default aggregating function is `len` (it is same as `size`) and I think it is also faster solution. `Crosstab` use first argument as `index` and `second` of columns. Give me a time, I try add timings. – jezrael Aug 24 '16 at 20:57
  • But I think better it is explain in [`docs`](http://pandas.pydata.org/pandas-docs/stable/reshaping.html#cross-tabulations). – jezrael Aug 24 '16 at 20:58
6

If you want to use value_counts you can use it on a given series, and resort to the following:

df.groupby(["id", "group"])["term"].value_counts().unstack(fill_value=0)

or in an equivalent fashion, using the .agg method:

df.groupby(["id", "group"]).agg({"term": "value_counts"}).unstack(fill_value=0)

Another option is to directly use value_counts on the DataFrame itself without resorting to groupby:

df.value_counts().unstack(fill_value=0)
Barth
  • 71
  • 1
  • 2
0

Another alternative:

df.assign(count=1).groupby(['id', 'group','term']).sum().unstack(fill_value=0).xs("count", 1)

term      term1  term2  term3
id group                     
1  1          2      1      0
   2          0      1      0
2  2          1      0      1
   3          1      0      0
ali bakhtiari
  • 1,051
  • 4
  • 23