I want to give each character of the binary into it's own
space inside an array. However, I can't seem to save digits
from the return values in my string array.
There are a number of ways to approach this, if I understand what you are asking. First, there is no need to actually store the results of the binary representation of your number in an array to call T1()
or T0()
based on the bit value of any given bit that makes up the number.
Take your example 24
(binary 11000
). If I read your post correctly you state:
In this case since the decimal is 24
, the binary
would be 11000
therefore it should execute the the
function T1()
2
times and T0()
6
times.
(I'm not sure where you get 6
times, it looks like you intended that T0()
would be called 3
times)
If you have T0
and T1
defined, for example, to simply let you know when they are called, e.g.:
void T1 (void) { puts ("T1 called"); }
void T0 (void) { puts ("T0 called"); }
You can write a function (say named callt
) to call T1
for each 1-bit
and T0
for each 0-bit
in a number simply as follows:
void callt (const unsigned long v)
{
if (!v) { putchar ('0'); return; };
size_t sz = sizeof v * CHAR_BIT;
unsigned long rem = 0;
while (sz--)
if ((rem = v >> sz)) {
if (rem & 1)
T1();
else
T0();
}
}
So far example if you passed 24
to the function callt (24)
, the output would be:
$ ./bin/dec2bincallt
T1 called
T1 called
T0 called
T0 called
T0 called
(full example provided at the end of answer)
On the other hand, if you really do want to give each character of the binary into it's own space inside an array, then you would simply need to pass an array to capture the bit values (either the ASCII character representations for '0'
and '1'
, or just 0
and 1
) instead of calling T0
and T1
(you would also add a few lines to handle v=0
and also the nul-terminating character if you will use the array as a string) For example:
/** copy 'sz' bits of the binary representation of 'v' to 's'.
* returns pointer to 's', on success, empty string otherwise.
* 's' must be adequately sized to hold 'sz + 1' bytes.
*/
char *bincpy (char *s, unsigned long v, unsigned sz)
{
if (!s || !sz) {
*s = 0;
return s;
}
if (!v) {
*s = '0';
*(s + 1) = 0;
return s;
}
unsigned i;
for (i = 0; i < sz; i++)
s[i] = (v >> (sz - 1 - i)) & 1 ? '1' : '0';
s[sz] = 0;
return s;
}
Let me know if you have any additional questions. Below are two example programs. Both take as their first argument the number to convert (or to process) as binary (default: 24 if no argument is given). The first simply calls T1
for each 1-bit
and T0
for each 0-bit
:
#include <stdio.h>
#include <stdlib.h>
#include <limits.h> /* for CHAR_BIT */
void callt (const unsigned long v);
void T1 (void) { puts ("T1 called"); }
void T0 (void) { puts ("T0 called"); }
int main (int argc, char **argv) {
unsigned long v = argc > 1 ? strtoul (argv[1], NULL, 10) : 24;
callt (v);
return 0;
}
void callt (const unsigned long v)
{
if (!v) { putchar ('0'); return; };
size_t sz = sizeof v * CHAR_BIT;
unsigned long rem = 0;
while (sz--)
if ((rem = v >> sz)) {
if (rem & 1) T1(); else T0();
}
}
Example Use/Output
$ ./bin/dec2bincallt
T1 called
T1 called
T0 called
T0 called
T0 called
$ ./bin/dec2bincallt 11
T1 called
T0 called
T1 called
T1 called
The second stores each bit of the binary representation for the value as a nul-terminated string and prints the result:
#include <stdio.h>
#include <stdlib.h>
#define BITS_PER_LONG 64 /* define as needed */
char *bincpy (char *s, unsigned long v, unsigned sz);
int main (int argc, char **argv) {
unsigned long v = argc > 1 ? strtoul (argv[1], NULL, 10) : 24;
char array[BITS_PER_LONG + 1] = "";
printf (" values in array: %s\n", bincpy (array, v, 16));
return 0;
}
/** copy 'sz' bits of the binary representation of 'v' to 's'.
* returns pointer to 's', on success, empty string otherwise.
* 's' must be adequately sized to hold 'sz + 1' bytes.
*/
char *bincpy (char *s, unsigned long v, unsigned sz)
{
if (!s || !sz) {
*s = 0;
return s;
}
if (!v) {
*s = '0';
*(s + 1) = 0;
return s;
}
unsigned i;
for (i = 0; i < sz; i++)
s[i] = (v >> (sz - 1 - i)) & 1 ? '1' : '0';
s[sz] = 0;
return s;
}
Example Use/Output
(padding to 16 bits)
$ ./bin/dec2binarray
values in array: 0000000000011000
$ ./bin/dec2binarray 11
values in array: 0000000000001011