I have a data frame like the one below:
df
Device_No Consumer.Account.Id Transaction_Date Transaction.Amount Transaction.Liter TXT_Month
1 1100110065 1.01014e+11 2014-01-02 13:04:45 0.09 0.3 1
2 1100110071 1.01014e+11 2014-01-03 20:53:58 0.39 1.3 1
3 1100110071 1.01014e+11 2014-01-04 18:08:39 0.06 0.2 1
4 1100110071 1.01014e+11 2014-01-04 18:10:37 1.62 5.4 1
5 1100110071 1.01014e+11 2014-01-04 23:23:04 0.42 1.4 1
6 1100110071 1.01014e+11 2014-01-05 09:47:17 0.63 2.1 1
7 1100110071 1.01014e+11 2014-01-05 15:27:02 0.57 1.9 1
8 1100110071 1.01014e+11 2014-01-08 11:30:20 0.63 2.1 1
9 1100110071 1.01014e+11 2014-01-08 16:42:27 0.72 2.4 1
10 1100110071 1.01014e+11 2014-01-12 15:21:06 0.00 0.0 1
I have about 800 customer id's with about varying amount of information for each customer. I want to filter out the customers who have greater than 10 months of information. My plan was to use DPLYR to group by HH_id, then count the number of unique months for each customer. From there I can easily filter out the customers that have >10 months of info.
I tried:
df_sum<-mutate(df,"TXT_Month"=month(Transaction_Date)%>%
group_by(df,Consumer.Account.Id)%>%
summarise("no_months"==length(unique(TXT_Month))
but get the error
"Error in eval(expr, envir, enclos) :
column 'Transaction_Date' has unsupported type : POSIXlt, POSIXt"
I have tried formatting Transaction_Date as.numeric and as.character, but get the same error. Any advice would be much appreciated!