0

I'm using the Python(xy) package and QT designer. Python(xy) has a built-in MPL widget for QT which is what I'm using. Works fine for me until I replot: Is there any way to make the current setup (pyplot) redraw?

Here's my code:

def mpl_plot(self, plot_page, replot = 0):  #Data stored in lists  

    if plot_page == 1:             #Plot 1st Page                        
        plt = self.mplwidget.axes                                
        fig = self.mplwidget.figure #Add a figure            
        fig = self.mplwidget.figure

    if plot_page == 2:          #Plot 2nd Page
        plt = self.mplwidget_2.axes 
        fig = self.mplwidget_2.figure    #Add a figure

    if plot_page == 3:           #Plot 3rd Page
        plt = self.mplwidget_3.axes 
        fig = self.mplwidget_3.figure    #Add a figure    


    par1 = fig.add_subplot(1,1,1)
    par2 = fig.add_subplot(1,1,1)      

    #Add Axes
    ax1 = par1.twinx()        
    ax2 = par2.twinx()  



    ax2.spines["right"].set_position(("outward", 25))
    self.make_patch_spines_invisible(ax2)
    ax2.spines["right"].set_visible(True)  
    impeller = str(self.comboBox_impellers.currentText())  #Get Impeller
    fac_curves = self.mpl_factory_specs(impeller)    
    fac_lift = fac_curves[0]        
    fac_power = fac_curves[1]
    fac_flow = fac_curves[2]
    fac_eff = fac_curves[3]        
    fac_max_eff = fac_curves[4]
    fac_max_eff_bpd = fac_curves[5]
    fac_ranges = self.mpl_factory_ranges()
    min_range = fac_ranges[0]
    max_range = fac_ranges[1]

    #Plot Chart
    plt.hold(True)    #Has to be included for  multiple curves

    plt.plot(fac_flow, fac_lift, 'b', linestyle = "dashed", linewidth = 1)

    #plt.plot(flow,f_lift,'b.')  #Plot datapoints only

    #Plot Factory Power
    ax1.plot(fac_flow, fac_power, 'r', linestyle = "dashed", linewidth = 1)
    #ax1.plot(flow,f_power,'r.')    #Plot datapoints only

    ax2.plot(fac_flow, fac_eff, 'g', linestyle = "dashed", linewidth = 1)

    #Plot x axis minor tick marks
    minorLocatorx = AutoMinorLocator()        
    ax1.xaxis.set_minor_locator(minorLocatorx)
    ax1.tick_params(which='both', width= 0.5)
    ax1.tick_params(which='major', length=7)
    ax1.tick_params(which='minor', length=4, color='k')

    #Plot y axis minor tick marks
    minorLocatory = AutoMinorLocator()
    plt.yaxis.set_minor_locator(minorLocatory)
    plt.tick_params(which='both', width= 0.5)
    plt.tick_params(which='major', length=7)
    plt.tick_params(which='minor', length=4, color='k')
    #Make Border of Chart White


    #Plot Grid        
    plt.grid(b=True, which='both', color='k', linestyle='-') 

    #set shaded Area 
    plt.axvspan(min_range, max_range, facecolor='#9BE2FA', alpha=0.5)    #Yellow rectangular shaded area

    #Set Vertical Lines
    plt.axvline(fac_max_eff_bpd, color = '#69767A')


    bep = fac_max_eff * 0.90    

    bep_corrected = bep * 0.90  

    ax2.annotate('BEP', xy=(fac_max_eff_bpd, bep_corrected), xycoords='data',  
            xytext=(-50, 30), textcoords='offset points',
            bbox=dict(boxstyle="round", fc="0.8"),
            arrowprops=dict(arrowstyle="-|>",
                            shrinkA=0, shrinkB=10,
                            connectionstyle="angle,angleA=0,angleB=90,rad=10"),
                    )
    #Set Scales         
    plt.set_ylim(0,max(fac_lift) + (max(fac_lift) * 0.40))    #Pressure 
    #plt.set_xlim(0,max(fac_flow))

    ax1.set_ylim(0,max(fac_power) + (max(fac_power) * 0.40))     #Power
    ax2.set_ylim(0,max(fac_eff) + (max(fac_eff) * 0.40))    #Effiency


    # Set Axes Colors
    plt.tick_params(axis='y', colors='b')
    ax1.tick_params(axis='y', colors='r')
    ax2.tick_params(axis='y', colors='g')

    # Set Chart Labels        
    plt.set_xlabel("BPD")
    plt.set_ylabel("Feet" , color = 'b')
    #ax1.set_ylabel("BHP", color = 'r')
    #ax1.set_ylabel("Effiency", color = 'g')
Mike C.
  • 1,761
  • 2
  • 22
  • 46

1 Answers1

0

I recommended

figure.canvas.draw()
figure.canvas.update()

This is from the documentation of matplotlib, and could you please delete any unnecessary code? That will help others to quickly find your problem.

disccip
  • 573
  • 3
  • 5
  • 15
  • Thank you. I added fig.canvas.draw(). It worked perfectly on the main plot but did not affect the subplots. Is there a fix for the subplots also? – Mike C. Aug 18 '16 at 19:59
  • Actually you overwrite your figure, you double assign fig = self.mplwidget.figure, use different name or try this: axes.figure.canvas.draw(), replace 'axes' to your subplot ax1 or something. – disccip Aug 19 '16 at 20:35
  • I tried calling: ax1.figure.canvas.draw() and ax1.figure.canvas.draw(). That had no effect on refreshing the plots. As for the double assignment of 'fig', are you referring to the 'if' statements at the beginning? If so I am only calling one of them while I am trying to work out the refresh problem. If you have any other ideas please let me know. I am at a loss here. – Mike C. Aug 19 '16 at 21:48
  • par1 = fig.add_subplot(1,1,1) par2 = fig.add_subplot(1,1,1), could you please explain this? This will only overwrite the subplot. And don't forget the canvas.update() – disccip Aug 19 '16 at 22:37
  • I am new to matplotlib. I got the code from an example somewhere. I needed two extra y axes. When I plotted the first time, it worked fine. Do you think that could be the problem? Do I put canvas.update() at the end, by draw()? – Mike C. Aug 19 '16 at 23:06
  • I looked at the code again. I should have done something like: – Mike C. Aug 19 '16 at 23:19