Thanks to Andres Hernandez for the answer:
Currently it is not possible. However, it is very easy to extend QL to allow it, but I think it needs to be done on the c++. So even though you are using QL in python, can you modify the c++ code and export a new binding? If yes, then you can use the following code, if not then I could just check it into the code, but it will take some time for the pull request to be accepted. In case you can touch the code, you can add something like this:
in nonlinearfittingmethods.hpp:
class NelsonSiegelConstrainedFitting
: public FittedBondDiscountCurve::FittingMethod {
public:
NelsonSiegelConstrainedFitting(const Array& lower, const Array& upper,
const Array& weights = Array(),
boost::shared_ptr<OptimizationMethod> optimizationMethod
= boost::shared_ptr<OptimizationMethod>());
std::auto_ptr<FittedBondDiscountCurve::FittingMethod> clone() const;
private:
Size size() const;
DiscountFactor discountFunction(const Array& x, Time t) const;
Array lower_, upper_;
};
in nonlinearfittingmethods.cpp:
NelsonSiegelConstrainedFitting::NelsonSiegelConstrainedFitting(
const Array& lower, const Array& upper, const Array& weights,
boost::shared_ptr<OptimizationMethod> optimizationMethod)
: FittedBondDiscountCurve::FittingMethod(true, weights, optimizationMethod),
lower_(lower), upper_(upper){
QL_REQUIRE(lower_.size() == 4, "Lower constraint must have 4 elements");
QL_REQUIRE(upper_.size() == 4, "Lower constraint must have 4 elements");
}
std::auto_ptr<FittedBondDiscountCurve::FittingMethod>
NelsonSiegelConstrainedFitting::clone() const {
return std::auto_ptr<FittedBondDiscountCurve::FittingMethod>(
new NelsonSiegelFitting(*this));
}
Size NelsonSiegelConstrainedFitting::size() const {
return 4;
}
DiscountFactor NelsonSiegelConstrainedFitting::discountFunction(const Array& x,
Time t) const {
///extreme values of kappa result in colinear behaviour of x[1] and x[2], so it should be constrained not only
///to be positive, but also not very extreme
Real kappa = lower_[3] + upper_[3]/(1.0+exp(-x[3]));
Real x0 = lower_[0] + upper_[0]/(1.0+exp(-x[0])),
x1 = lower_[1] + upper_[1]/(1.0+exp(-x[1])),
x2 = lower_[2] + upper_[2]/(1.0+exp(-x[2])),;
Real zeroRate = x0 + (x1 + x2)*
(1.0 - std::exp(-kappa*t))/
((kappa+QL_EPSILON)*(t+QL_EPSILON)) -
x2*std::exp(-kappa*t);
DiscountFactor d = std::exp(-zeroRate * t) ;
return d;
}
You then need to add it to the swig interface, but it should be trivial to do so.