I implemented a simple linear regression and I want to try it out by fitting a non linear model
specifically I am trying to fit a model for the function y = x^3 + 5
for example
this is my code
import numpy as np
import numpy.matlib
import matplotlib.pyplot as plt
def predict(X,W):
return np.dot(X,W)
def gradient(X, Y, W, regTerm=0):
return (-np.dot(X.T, Y) + np.dot(np.dot(X.T,X),W))/(m*k) + regTerm * W /(n*k)
def cost(X, Y, W, regTerm=0):
m, k = Y.shape
n, k = W.shape
Yhat = predict(X, W)
return np.trace(np.dot(Y-Yhat,(Y-Yhat).T))/(2*m*k) + regTerm * np.trace(np.dot(W,W.T)) / (2*n*k)
def Rsquared(X, Y, W):
m, k = Y.shape
SSres = cost(X, Y, W)
Ybar = np.mean(Y,axis=0)
Ybar = np.matlib.repmat(Ybar, m, 1)
SStot = np.trace(np.dot(Y-Ybar,(Y-Ybar).T))
return 1-SSres/SStot
m = 10
n = 200
k = 1
trX = np.random.rand(m, n)
trX[:, 0] = 1
for i in range(2, n):
trX[:, i] = trX[:, 1] ** i
trY = trX[:, 1] ** 3 + 5
trY = np.reshape(trY, (m, k))
W = np.random.rand(n, k)
numIter = 10000
learningRate = 0.5
for i in range(0, numIter):
W = W - learningRate * gradient(trX, trY, W)
domain = np.linspace(0,1,100000)
powerDomain = np.copy(domain)
m = powerDomain.shape[0]
powerDomain = np.reshape(powerDomain, (m, 1))
powerDomain = np.matlib.repmat(powerDomain, 1, n)
for i in range(1, n):
powerDomain[:, i] = powerDomain[:, 0] ** i
print(Rsquared(trX, trY, W))
plt.plot(trX[:, 1],trY,'o', domain, predict(powerDomain, W),'r')
plt.show()
the R^2 I'm getting is very close to 1, meaning I found a very good fit to the training data, but it isn't shown on the plots. When I plot the data, it usually looks like this:
it looks as if I'm underfitting the data, but with such a complex hypothesis, with 200 features (meaning i allow polynomials up to x^200) and only 10 training examples, I should very clearly be overfitting data, so I expect the red line to pass through all the blue points and go wild between them.
This isn't what I'm getting which is confusing to me. What's wrong?