Is there a way of automating variable selection of a GAM in R, similar to step? I've read the documentation of step.gam
and selection.gam
, but I've yet to see a answer with code that works. Additionally, I've tried method= "REML"
and select = TRUE
, but neither remove insignificant variables from the model.
I've theorized that I could create a step model and then use those variables to create the GAM, but that does not seem computationally efficient.
Example:
library(mgcv)
set.seed(0)
dat <- data.frame(rsp = rnorm(100, 0, 1),
pred1 = rnorm(100, 10, 1),
pred2 = rnorm(100, 0, 1),
pred3 = rnorm(100, 0, 1),
pred4 = rnorm(100, 0, 1))
model <- gam(rsp ~ s(pred1) + s(pred2) + s(pred3) + s(pred4),
data = dat, method = "REML", select = TRUE)
summary(model)
#Family: gaussian
#Link function: identity
#Formula:
#rsp ~ s(pred1) + s(pred2) + s(pred3) + s(pred4)
#Parametric coefficients:
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.02267 0.08426 0.269 0.788
#Approximate significance of smooth terms:
# edf Ref.df F p-value
#s(pred1) 0.8770 9 0.212 0.1174
#s(pred2) 1.8613 9 0.638 0.0374 *
#s(pred3) 0.5439 9 0.133 0.1406
#s(pred4) 0.4504 9 0.091 0.1775
---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#R-sq.(adj) = 0.0887 Deviance explained = 12.3%
#-REML = 129.06 Scale est. = 0.70996 n = 100