I know I can just copy the function by reference, but I want to understand what's going on in the following code that produces a segfault.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int return0()
{
return 0;
}
int main()
{
int (*r0c)(void) = malloc(100);
memcpy(r0c, return0, 100);
printf("Address of r0c is: %x\n", r0c);
printf("copied is: %d\n", (*r0c)());
return 0;
}
Here's my mental model of what I thought should work.
The process owns the memory allocated to r0c. We are copying the data from the data segment corresponding to return0, and the copy is successful.
I thought that dereferencing a function pointer is the same as calling the data segment that the function pointer points to. If that's the case, then the instruction pointer should move to the data segment corresponding to r0c, which will contain the instructions for function return0. The binary code corresponding to return0 doesn't contain any jumps or function calls that would depend on the address of return0, so it should just return 0 and restore ip... 100 bytes is certainly enough for the function pointer, and 0xc3 is well within the bounds of r0c (it is at byte 11).
So why the segmentation fault? Is this a misunderstanding of the semantics of C's function pointers or is there some security feature that prevents self-modifying code that I'm unaware of?