I have a large csv file contains some bus network information.
The stop code are made of a large number with a certain letter in the end. However, some of them are only numbers. When I read them into pandas, the large numbers become in scientific notion. like
code_o lat_o lon_o code_d
490016444HN 51.56878 0.1811568 490013271R
490013271R 51.57493 0.1781319 490009721A
490009721A 51.57708 0.1769355 490010407C
490010407C 51.57947 0.1775409 490011659G
490011659G 51.5806 0.1831088 490009810M
490009810M 51.57947 0.1848733 490014448S
490014448S 51.57751 0.185111 490001243Y
490001243Y 51.57379 0.1839945 490013654S
490013654S 51.57143 0.184776 490013482E
490013482E 51.57107 0.187039 490015118E
490015118E 51.5724 0.1923417 490011214E
490011214E 51.57362 0.1959939 490006980E
490006980E 51.57433 0.1999537 4.90E+09
4.90E+09 51.57071 0.2087701 490003049E
490003049E 51.5631 0.2146196 490004001A
490004001A 51.56314 0.2165552 490015350F
The type of them are object, however I need them to be a normal number in order to cross join other tables.
Since the column is not an 'int' or 'float', I cannot modify them by a whole column.
Any suggestion?
I attached the file from dropbox
https://www.dropbox.com/s/jhbxsncd97rq1z4/gtfs_OD_links_L.csv?dl=0