I am attempting to modify this example with county data for Michigan. In short, it's working, but it seems to be adding some extra shapes here and there in the process of drawing the counties. I'm guessing that in some instances (where there are counties with islands), the island part needs to be listed as a separate "county", but I'm not sure about the other case, such as with Wayne county in the lower right part of the state.
Here's a picture of what I currently have:
Here's what I did so far:
- Get county data from Bokeh's sample county data just to get the state abbreviation per state number (my second, main data source only has state numbers). For this example, I'll simplify it by just filtering for state number 26).
- Get state coordinates ('500k' file) by county from the U.S. Census site.
- Use the following code to generate an 'interactive' map of Michigan.
Note: To pip install shapefile (really pyshp), I think I had to download the .whl file from here and then do pip install [path to .whl file].
import pandas as pd
import numpy as np
import shapefile
from bokeh.models import HoverTool, ColumnDataSource
from bokeh.palettes import Viridis6
from bokeh.plotting import figure, show, output_notebook
shpfile=r'Path\500K_US_Counties\cb_2015_us_county_500k.shp'
sf = shapefile.Reader(shpfile)
shapes = sf.shapes()
#Here are the rows from the shape file (plus lat/long coordinates)
rows=[]
lenrow=[]
for i,j in zip(sf.shapeRecords(),sf.shapes()):
rows.append(i.record+[j.points])
if len(i.record+[j.points])!=10:
print("Found record with irrular number of columns")
fields1=sf.fields[1:] #Ignore first field as it is not used (maybe it's a meta field?)
fields=[seq[0] for seq in fields1]+['Long_Lat']#Take the first element in each tuple of the list
c=pd.DataFrame(rows,columns=fields)
try:
c['STATEFP']=c['STATEFP'].astype(int)
except:
pass
#cns=pd.read_csv(r'Path\US_Counties.csv')
#cns=cns[['State Abbr.','STATE num']]
#cns=cns.drop_duplicates('State Abbr.',keep='first')
#c=pd.merge(c,cns,how='left',left_on='STATEFP',right_on='STATE num')
c['Lat']=c['Long_Lat'].apply(lambda x: [e[0] for e in x])
c['Long']=c['Long_Lat'].apply(lambda x: [e[1] for e in x])
#c=c.loc[c['State Abbr.']=='MI']
c=c.loc[c['STATEFP']==26]
#latitudex, longitude=y
county_xs = c['Lat']
county_ys = c['Long']
county_names = c['NAME']
county_colors = [Viridis6[np.random.randint(1,6, size=1).tolist()[0]] for l in aland]
randns=np.random.randint(1,6, size=1).tolist()[0]
#county_colors = [Viridis6[e] for e in randns]
#county_colors = 'b'
source = ColumnDataSource(data=dict(
x=county_xs,
y=county_ys,
color=county_colors,
name=county_names,
#rate=county_rates,
))
output_notebook()
TOOLS="pan,wheel_zoom,box_zoom,reset,hover,save"
p = figure(title="Title", tools=TOOLS,
x_axis_location=None, y_axis_location=None)
p.grid.grid_line_color = None
p.patches('x', 'y', source=source,
fill_color='color', fill_alpha=0.7,
line_color="white", line_width=0.5)
hover = p.select_one(HoverTool)
hover.point_policy = "follow_mouse"
hover.tooltips = [
("Name", "@name"),
#("Unemployment rate)", "@rate%"),
("(Long, Lat)", "($x, $y)"),
]
show(p)
I'm looking for a way to avoid the extra lines and shapes.
Thanks in advance!