I came up with two parallel solutions to find as fast as possible one solution for the N queens problem.
The first one uses Futures
import scala.collection.immutable.HashSet
import scala.concurrent.{Await, Future, Promise}
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global
/**
* Created by mikel on 17/06/16.
*/
object Queens2 extends App {
val time = System.currentTimeMillis()
val boardSize = 200
def firstResult(): Future[List[Int]] = {
def iterate(solution: Vector[(Int, Int)], remainingElements: Set[Int], invalidSum: HashSet[Int], invalidMinus: HashSet[Int]): Stream[List[(Int, Int)]] = {
def isSafe(queens: Vector[(Int, Int)], queen: Int): Boolean = {
!invalidSum.contains(queens.size + queen) && !invalidMinus.contains(queens.size - queen)
}
if (solution.size == boardSize)
Stream(solution.toList)
else {
for {
nextQueen <- remainingElements.toStream if isSafe(solution, nextQueen)
res <- iterate(solution :+(solution.size, nextQueen), remainingElements - nextQueen, invalidSum + (solution.size + nextQueen), invalidMinus + (solution.size - nextQueen))
} yield (res)
}
}
val promise = Promise[List[Int]]()
val allElements = (0 until boardSize).toSet
val range = (0 until boardSize)
range.foreach(pos => {
// HERE we parallelize the execution
Future {
promise.trySuccess(iterate(Vector((0, pos)), allElements - pos, HashSet(pos), HashSet(-pos)).map(_.map(_._2)).head)
}
}
)
promise.future
}
val resFuture = firstResult()
resFuture.onSuccess { case res =>
println("Finished in: " + (System.currentTimeMillis() - time))
println(res)
System.exit(0)
}
Await.result(Promise().future, Duration.Inf)
}
The other one uses a ParRange
import scala.collection.immutable.HashSet
import scala.concurrent.{Await, Future, Promise}
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global
/**
* Created by mikel on 17/06/16.
*/
object Queens extends App {
val time = System.currentTimeMillis()
val boardSize = 200
def firstResult(): Future[List[Int]] = {
def iterate(solution: Vector[(Int, Int)], remainingElements: Set[Int], invalidSum: HashSet[Int], invalidMinus: HashSet[Int]): Stream[List[(Int, Int)]] = {
def isSafe(queens: Vector[(Int, Int)], queen: Int): Boolean = {
!invalidSum.contains(queens.size + queen) && !invalidMinus.contains(queens.size - queen)
}
if (solution.size == boardSize)
Stream(solution.toList)
else {
for {
nextQueen <- remainingElements.toStream if isSafe(solution, nextQueen)
res <- iterate(solution :+(solution.size, nextQueen), remainingElements - nextQueen, invalidSum + (solution.size + nextQueen), invalidMinus + (solution.size - nextQueen))
} yield (res)
}
}
val promise = Promise[List[Int]]()
Future {
val allElements = (0 until boardSize).toSet
// HERE we parallelize the execution
val range = (0 until boardSize).par
range.foreach(pos => {
promise.trySuccess(iterate(Vector((0, pos)), allElements - pos, HashSet(pos), HashSet(-pos)).map(_.map(_._2)).head)
}
)
}
promise.future
}
val resFuture = firstResult()
resFuture.onSuccess { case res =>
println("Finished in: " + (System.currentTimeMillis() - time))
println(res)
System.exit(0)
}
Await.result(Promise().future, Duration.Inf)
}
After executing both programs with a 200 size board I get a much faster solution with the first approach (apparently the level of parallelization goes down in the second solution after some time), anybody knows why is this happening?