I know Python isn't the best idea to be writing any kind of software of this nature. My reasoning is to use this type of algorithm for a Raspberry Pi 3 in it's decision making (still unsure how that will go), and the libraries and APIs that I'll be using (Adafruit motor HATs, Google services, OpenCV, various sensors, etc) all play nicely for importing in Python, not to mention I'm just more comfortable in this environment for the rPi specifically. Already I've cursed it as object oriented such as Java or C++ just makes more sense to me, but Id rather deal with its inefficiencies and focus on the bigger picture of integration for the rPi.
I won't explain the code here, as it's pretty well documented in the comment sections throughout the script. My questions is as stated above; can this be considered basically a genetic algorithm? If not, what must it have to be a basic AI or genetic code? Am I on the right track for this type of problem solving? I know usually there are weighted variables and functions to promote "survival of the fittest", but that can be popped in as needed, I think.
I've read up quite a bit of forums and articles about this topic. I didn't want to copy someone else's code that I barely understand and start using it as a base for a larger project of mine; I want to know exactly how it works so I'm not confused as to why something isn't working out along the way. So, I just tried to comprehend the basic idea of how it works, and write how I interpreted it. Please remember I'd like to stay in Python for this. I know rPi's have multiple environments for C++, Java, etc, but as stated before, most hardware components I'm using have only Python APIs for implementation. if I'm wrong, explain at the algorithmic level, not just with a block of code (again, I really want to understand the process). Also, please don't nitpick code conventions unless it's pertinent to my problem, everyone has a style and this is just a sketch up for now. Here it is, and thanks for reading!
# Created by X3r0, 7/3/2016
# Basic genetic algorithm utilizing a two dimensional array system.
# the 'DNA' is the larger array, and the 'gene' is a smaller array as an element
# of the DNA. There exists no weighted algorithms, or statistical tracking to
# make the program more efficient yet; it is straightforwardly random and solves
# its problem randomly. At this stage, only the base element is iterated over.
# Basic Idea:
# 1) User inputs constraints onto array
# 2) Gene population is created at random given user constraints
# 3) DNA is created with randomized genes ( will never randomize after )
# a) Target DNA is created with loop control variable as data (basically just for some target structure)
# 4) CheckDNA() starts with base gene from DNA, and will recurse until gene matches the target gene
# a) Randomly select two genes from DNA
# b) Create a candidate gene by splicing both parent genes together
# c) Check candidate gene against the target gene
# d) If there exists a match in gene elements, a child gene is created and inserted into DNA
# e) If the child gene in DNA is not equal to target gene, recurse until it is
import random
DNAsize = 32
geneSize = 5
geneDiversity = 9
geneSplit = 4
numRecursions = 0
DNA = []
targetDNA = []
def init():
global DNAsize, geneSize, geneDiversity, geneSplit, DNA
print("This is a very basic form of genetic software. Input variable constraints below. "
"Good starting points are: DNA strand size (array size): 32, gene size (sub array size: 5, gene diversity (randomized 0 - x): 5"
"gene split (where to split gene array for splicing): 2")
DNAsize = int(input('Enter DNA strand size: '))
geneSize = int(input('Enter gene size: '))
geneDiversity = int(input('Enter gene diversity: '))
geneSplit = int(input('Enter gene split: '))
# initializes the gene population, and kicks off
# checkDNA recursion
initPop()
checkDNA(DNA[0])
def initPop():
# builds an array of smaller arrays
# given DNAsize
for x in range(DNAsize):
buildDNA()
# builds the goal array with a recurring
# numerical pattern, in this case just the loop
# control variable
buildTargetDNA(x)
def buildDNA():
newGene = []
# builds a smaller array (gene) using a given geneSize
# and randomized with vaules 0 - [given geneDiversity]
for x in range(geneSize):
newGene.append(random.randint(0,geneDiversity))
# append the built array to the larger array
DNA.append(newGene)
def buildTargetDNA(x):
# builds the target array, iterating with x as a loop
# control from the call in init()
newGene = []
for y in range(geneSize):
newGene.append(x)
targetDNA.append(newGene)
def checkDNA(childGene):
global numRecursions
numRecursions = numRecursions+1
gene = DNA[0]
targetGene = targetDNA[0]
parentGeneA = DNA[random.randint(0,DNAsize-1)] # randomly selects an array (gene) from larger array (DNA)
parentGeneB = DNA[random.randint(0,DNAsize-1)]
pos = random.randint(geneSplit-1,geneSplit+1) # randomly selects a position to split gene for splicing
candidateGene = parentGeneA[:pos] + parentGeneB[pos:] # spliced gene given split from parentA and parentB
print("DNA Splice Position: " + str(pos))
print("Element A: " + str(parentGeneA))
print("Element B: " + str(parentGeneB))
print("Candidate Element: " + str(candidateGene))
print("Target DNA: " + str(targetDNA))
print("Old DNA: " + str(DNA))
# iterates over the candidate gene and compares each element to the target gene
# if the candidate gene element hits a target gene element, the resulting child
# gene is created
for x in range(geneSize):
#if candidateGene[x] != targetGene[x]:
#print("false ")
if candidateGene[x] == targetGene[x]:
#print("true ")
childGene.pop(x)
childGene.insert(x, candidateGene[x])
# if the child gene isn't quite equal to the target, and recursion hasn't reached
# a max (apparently 900), the child gene is inserted into the DNA. Recursion occurs
# until the child gene equals the target gene, or max recursuion depth is exceeded
if childGene != targetGene and numRecursions < 900:
DNA.pop(0)
DNA.insert(0, childGene)
print("New DNA: " + str(DNA))
print(numRecursions)
checkDNA(childGene)
init()
print("Final DNA: " + str(DNA))
print("Number of generations (recursions): " + str(numRecursions))