8

I am new to Spark. I would like to make a sparse matrix a user-id item-id matrix specifically for a recommendation engine. I know how I would do this in python. How does one do this in PySpark? Here is how I would have done it in matrix. The table looks like this now.

Session ID| Item ID | Rating
     1          2       1
     1          3       5
    import numpy as np

    data=df[['session_id','item_id','rating']].values
    data

    rows, row_pos = np.unique(data[:, 0], return_inverse=True)
    cols, col_pos = np.unique(data[:, 1], return_inverse=True)

    pivot_table = np.zeros((len(rows), len(cols)), dtype=data.dtype)
    pivot_table[row_pos, col_pos] = data[:, 2]
ashish trehan
  • 413
  • 1
  • 5
  • 9
  • Take a look at SparseVector: https://spark.apache.org/docs/1.1.0/api/python/pyspark.mllib.linalg.SparseVector-class.html – Gopala Jun 30 '16 at 22:41

1 Answers1

8

Like that:

from pyspark.mllib.linalg.distributed import CoordinateMatrix, MatrixEntry

# Create an RDD of (row, col, value) triples
coordinates = sc.parallelize([(1, 2, 1), (1, 3, 5)])
matrix = CoordinateMatrix(coordinates.map(lambda coords: MatrixEntry(*coords)))
shadowtalker
  • 12,529
  • 3
  • 53
  • 96