This can be done similarly like we do the knapsack problem, at each index we try to either put in a value inside the knapsack or not, and here the knapsack has no bound on the size hence we can put any no of elements inside the knapsack.
Then we just need to consider only those solutions that satisfy the condition that the size of the knapsack >= X
.
The state of the knapsack is DP[i][j]
where i
is the index of the element and j
is the size of the current knapsack, notice we only need to consider those solutions that have j >= X
.
Below is a recursive Dynamic Programming solution in c++ :
#include <iostream>
#include <cstring>
#define INF 1000000000
using namespace std;
int cost[1000], value[1000], n, X, dp[1000][1000];
int solve(int idx, int val){
if(idx == n){
//this is the base case of the recursion, i.e when
//the value is >= X then only we consider the solution
//else we reject the solution and pass Infinity
if(val >= X) return 0;
else return INF;
}
//this is the step where we return the solution if we have calculated it previously
//when dp[idx][val] == -1, that means that the solution has not been calculated before
//and we need to calculate it now
if(dp[idx][val] != -1) return dp[idx][val];
//this is the step where we do not pick the current element in the knapsack
int v1 = solve(idx+1, val);
//this is the step where we add the current element in the knapsack
int v2 = solve(idx+1, val + value[idx]) + cost[idx];
//here we are taking the minimum of the above two choices that we made and trying
//to find the better one, i.e the one which is the minimum
int ans = min(v1, v2);
//here we are setting the answer, so that if we find this state again, then we do not calculate
//it again rather use this solution that we calculated
dp[idx][val] = ans;
return dp[idx][val];
}
int main(){
cin >> n >> X;
for(int i = 0;i < n;i++){
cin >> cost[i] >> value[i];
}
//here we are initializing our dp table to -1, i.e no state has been calculated currently
memset(dp, -1, sizeof dp);
int ans = solve(0, 0);
//if the answer is Infinity then the solution is not possible
if(ans != INF)cout << solve(0, 0) << endl;
else cout << "IMPOSSIBLE" << endl;
return 0;
}
Link to solution on ideone : http://ideone.com/7ZCW8z