I think that there is some confusion in some of the answers proposed because of the use of the word "model" in the question asked. If I am guessing correctly, you are referring to the fact that in K-fold cross-validation we learn K-different predictors (or decision functions), which you call "model" (this is a bad idea because in machine learning we also do model selection which is choosing between families of predictors and this is something which can be done using cross-validation). Cross-validation is typically used for hyperparameter selection or to choose between different algorithms or different families of predictors. Once these chosen, the most common approach is to relearn a predictor with the selected hyperparameter and algorithm from all the data.
However, if the loss function which is optimized is convex with respect to the predictor, than it is possible to simply average the different predictors obtained from each fold.
This is because for a convex risk, the risk of the average of the predictor is always smaller than the average of the individual risks.
The PROs and CONs of averaging (vs retraining) are as follows
PROs: (1) In each fold, the evaluation that you made on the held out set gives you an unbiased estimate of the risk for those very predictors that you have obtained, and for these estimates the only source of uncertainty is due to the estimate of the empirical risk (the average of the loss function) on the held out data.
This should be contrasted with the logic which is used when you are retraining and which is that the cross-validation risk is an estimate of the "expected value of the risk of a given learning algorithm" (and not of a given predictor) so that if you relearn from data from the same distribution, you should have in average the same level of performance. But note that this is in average and when retraining from the whole data this could go up or down. In other words, there is an additional source of uncertainty due to the fact that you will retrain.
(2) The hyperparameters have been selected exactly for the number of datapoints that you used in each fold to learn. If you relearn from the whole dataset, the optimal value of the hyperparameter is in theory and in practice not the same anymore, and so in the idea of retraining, you really cross your fingers and hope that the hyperparameters that you have chosen are still fine for your larger dataset.
If you used leave-one-out, there is obviously no concern there, and if the number of data point is large with 10 fold-CV you should be fine. But if you are learning from 25 data points with 5 fold CV, the hyperparameters for 20 points are not really the same as for 25 points...
CONs: Well, intuitively you don't benefit from training with all the data at once
There are unfortunately very little thorough theory on this but the following two papers especially the second paper consider precisely the averaging or aggregation of the predictors from K-fold CV.
Jung, Y. (2016). Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models. International Journal of Mathematical and Computational Sciences, 10(1), 19-25.
Maillard, G., Arlot, S., & Lerasle, M. (2019). Aggregated Hold-Out. arXiv preprint arXiv:1909.04890.