0

Working with data and would like to create a sparse matrix to later be used for clustering purposes.

fileHandle = open('data', 'r')

for line in fileHandle:
    json_list = []
    fields = line.split('\t')
    json_list.append(fields[0])
    json_list.append(fields[1])
    json_list.append(fields[3])

Right now the data looks like this:

term, ids, quantity
['buick', '123,234', '500']
['chevy', '345,456', '300']
['suv','123', '100']

The output I would need would be like this:

term, quantity, '123', '234', '345', '456', '567'
buick, 500, 1, 1, 0, 0, 0
chevy, 300, 0, 0, 1, 1, 0
suv,   100, 1, 0, 0, 0, 0

I've tried working with numpy sparse matrix library but with no success.

jKraut
  • 2,325
  • 6
  • 35
  • 48

2 Answers2

0

I have a lazy method

data = [['term', 'ids', 'quantity'],
... ['buick', ['123', '234'], 500],
... ['chevy', ['345', '456'], 300],
... ['suv', ['123', '567'], 100]]
res = []
for i,line in enumerate(data):
...     if i == 0:
...         header = line
...     else:
...         temp  = {}
...         for j,ele in enumerate(line):
...             if j in [0,2]:
...                 temp.update( {header[j] : ele} )
...             else:
...                 for num in line[1]:
...                     temp.update( { num:1 } )
...         res.append(temp)

with open(filepath,'wb') as f:
...      w = csv.DictWriter(f,set( [ k for ele in res for k in ele.keys()] ))
...      w.writeheader()
...      w.writerows(res)

output

term    456 567 345 123 234 quantity
buick               1   1   500
chevy   1       1           300
suv     1       1           100
galaxyan
  • 5,944
  • 2
  • 19
  • 43
0

scikit_learn probably has the tools to do this easily, but I'll demonstrate a basic Python/numpy solution.

The raw data - a list of lists

In [1150]: data=[['buick', '123,234', '500'],
                 ['chevy', '345,456', '300'],
                 ['suv','123', '100']]

I can pull out verious columns with list comprehensions. This might not be the fastest in a very large case, but for now it's an easy way to tackle the issue piece by piece.

In [1151]: terms=[row[0] for row in data]

In [1152]: terms
Out[1152]: ['buick', 'chevy', 'suv']

In [1153]: quantities=[int(row[2]) for row in data]

In [1154]: quantities
Out[1154]: [500, 300, 100]

Create the list of possible ids. I could pull these from data, but you apparently are using a larger list. They could be strings instead of ints.

In [1155]: idset=[123,234,345,456,567]

In [1156]: ids=[[int(i) for i in row[1].split(',')] for row in data]

In [1157]: ids
Out[1157]: [[123, 234], [345, 456], [123]]

np.in1d is a handy tool for finding where those sublists fit in the master list. The resulting idM is the feature matrix, with lots of 0s and a few ones.

In [1158]: idM=np.array([np.in1d(idset,i) for i in ids],int)

In [1159]: idM
Out[1159]: 
array([[1, 1, 0, 0, 0],
       [0, 0, 1, 1, 0],
       [1, 0, 0, 0, 0]])

We could assemble the pieces in various ways.

For example a structured array could be created with:

In [1161]: M=np.zeros(len(data),dtype='U10,int,(5)int')

In [1162]: M['f0']=terms

In [1163]: M['f1']=quantities

In [1164]: M['f2']=idM

In [1165]: M
Out[1165]: 
array([('buick', 500, [1, 1, 0, 0, 0]), ('chevy', 300, [0, 0, 1, 1, 0]),
       ('suv', 100, [1, 0, 0, 0, 0])], 
      dtype=[('f0', '<U10'), ('f1', '<i4'), ('f2', '<i4', (5,))])

idM could be turned into a sparse matrix with:

In [1167]: from scipy import sparse

In [1168]: c=sparse.coo_matrix(idM)

In [1169]: c
Out[1169]: 
<3x5 sparse matrix of type '<class 'numpy.int32'>'
    with 5 stored elements in COOrdinate format>

In [1170]: c.A
Out[1170]: 
array([[1, 1, 0, 0, 0],
       [0, 0, 1, 1, 0],
       [1, 0, 0, 0, 0]])

In this exploration it was easier to create the denser array first, and make a sparse from that.

But sparse provides a bmat function that lets me create the multirow matrix from a list of single row ones. (see my edit history for a version that constructs the coo inputs directly)

In [1220]: ll=[[sparse.coo_matrix(np.in1d(idset,i),dtype=int)] for i in ids]

In [1221]: sparse.bmat(ll)
Out[1221]: 
<3x5 sparse matrix of type '<class 'numpy.int32'>'
    with 5 stored elements in COOrdinate format>

In [1222]: sparse.bmat(ll).A
Out[1222]: 
array([[1, 1, 0, 0, 0],
       [0, 0, 1, 1, 0],
       [1, 0, 0, 0, 0]], dtype=int32)
hpaulj
  • 221,503
  • 14
  • 230
  • 353
  • unclear on 1158 where you got "idset" in idM=np.array([np.in1d(idset,i) for i in ids],int) – jKraut Jun 22 '16 at 15:51
  • Same as `idlist` in [1155]. I defined both names but ended up using `idset`. I got the values from your desired output table. – hpaulj Jun 22 '16 at 16:01