I am currently trying to use Neural Network to make regression predictions.
However, I don't know what is the best way to handle this, as I read that there were 2 different ways to do regression predictions with a NN.
1) Some websites/articles suggest to add a final layer which is linear. http://deeplearning4j.org/linear-regression.html
My final layers would look like, I think, :
layer1 = tanh(layer0*weight1 + bias1)
layer2 = identity(layer1*weight2+bias2)
I also noticed that when I use this solution, I usually get a prediction which is the mean of the batch prediction. And this is the case when I use tanh or sigmoid as a penultimate layer.
2) Some other websites/articles suggest to scale the output to a [-1,1]
or [0,1]
range and to use tanh or sigmoid as a final layer.
Are these 2 solutions acceptable ? Which one should one prefer ?
Thanks, Paul