I'm trying to navigate an agent in a n*n gridworld domain by using Q-Learning + a feedforward neural network as a q-function approximator. Basically the agent should find the best/shortest way to reach a certain terminal goal position (+10 reward). Every step the agent takes it gets -1 reward. In the gridworld there are also some positions the agent should avoid (-10 reward, terminal states,too).
So far I implemented a Q-learning algorithm, that saves all Q-values in a Q-table and the agent performs well. In the next step, I want to replace the Q-table by a neural network, trained online after every step of the agent. I tried a feedforward NN with one hidden layer and four outputs, representing the Q-values for the possible actions in the gridworld (north,south,east, west). As input I used a nxn zero-matrix, that has a "1" at the current positions of the agent.
To reach my goal I tried to solve the problem from the ground up:
Explore the gridworld with standard Q-Learning and use the Q-map as training data for the Network once Q-Learning is finished --> worked fine
Use Q-Learning and provide the updates of the Q-map as trainingdata for NN (batchSize = 1) --> worked good
Replacy the Q-Map completely by the NN. (This is the point, when it gets interesting!)
-> FIRST MAP: 4 x 4 As described above, I have 16 "discrete" Inputs, 4 Output and it works fine with 8 neurons(relu) in the hidden layer (learning rate: 0.05). I used a greedy policy with an epsilon, that reduces from 1 to 0.1 within 60 episodes. The test scenario is shown here. Performance is compared beetween standard qlearning with q-map and "neural" qlearning (in this case i used 8 neurons and differnt dropOut rates).
To sum it up: Neural Q-learning works good for small grids, also the performance is okay and reliable.
-> Bigger MAP: 10 x 10
Now I tried to use the neural network for bigger maps. At first I tried this simple case.
In my case the neural net looks as following: 100 input; 4 Outputs; about 30 neurons(relu) in one hidden layer; again I used a decreasing exploring factor for greedy policy; over 200 episodes the learning rate decreases from 0.1 to 0.015 to increase stability.
At frist I had problems with convergence and interpolation between single positions caused by the discrete input vector. To solve this I added some neighbour positions to the vector with values depending on thier distance to the current position. This improved the learning a lot and the policy got better. Performance with 24 neurons is seen in the picture above.
Summary: the simple case is solved by the network, but only with a lot of parameter tuning (number of neurons, exploration factor, learning rate) and special input transformation.
Now here are my questions/problems I still haven't solved:
(1) My network is able to solve really simple cases and examples in a 10 x 10 map, but it fails as the problem gets a bit more complex. In cases where failing is very likely, the network has no change to find a correct policy. I'm open minded for any idea that could improve performace in this cases.
(2) Is there a smarter way to transform the input vector for the network? I'm sure that adding the neighboring positons to the input vector on the one hand improve the interpolation of the q-values over the map, but on the other hand makes it harder to train special/important postions to the network. I already tried standard cartesian two-dimensional input (x/y) on an early stage, but failed.
(3) Is there another network type than feedforward network with backpropagation, that generally produces better results with q-function approximation? Have you seen projects, where a FF-nn performs well with bigger maps?