2

I have a data frame of item lists, where each row in the data frame contain LHS and RHS association rules with the corresponding support, confidence and lift. here's the data:

structure(list(rules = structure(c(13L, 4L, 28L, 1L, 24L, 15L
), .Label = c("{butter,jam} => {whole milk}", "{butter,rice} => {whole milk}", 
"{canned fish,hygiene articles} => {whole milk}", "{curd,cereals} => {whole milk}", 
"{domestic eggs,rice} => {whole milk}", "{grapes,onions} => {other vegetables}", 
"{hamburger meat,bottled beer} => {whole milk}", "{hamburger meat,curd} => {whole milk}", 
"{hard cheese,oil} => {other vegetables}", "{herbs,fruit/vegetable juice} => {other vegetables}", 
"{herbs,rolls/buns} => {whole milk}", "{herbs,shopping bags} => {other vegetables}", 
"{liquor,red/blush wine} => {bottled beer}", "{meat,margarine} => {other vegetables}", 
"{napkins,house keeping products} => {whole milk}", "{oil,mustard} => {whole milk}", 
"{onions,butter milk} => {other vegetables}", "{onions,waffles} => {other vegetables}", 
"{pastry,sweet spreads} => {whole milk}", "{pickled vegetables,chocolate} => {whole milk}", 
"{pork,butter milk} => {other vegetables}", "{rice,bottled water} => {whole milk}", 
"{rice,sugar} => {whole milk}", "{soups,bottled beer} => {whole milk}", 
"{tropical fruit,herbs} => {whole milk}", "{turkey,curd} => {other vegetables}", 
"{whipped/sour cream,house keeping products} => {whole milk}", 
"{yogurt,cereals} => {whole milk}", "{yogurt,rice} => {other vegetables}"
), class = "factor"), support = c(0.00193187595322827, 0.00101677681748856, 
0.00172852058973055, 0.00101677681748856, 0.00111845449923742, 
0.00132180986273513), confidence = c(0.904761904761905, 0.909090909090909, 
0.80952380952381, 0.833333333333333, 0.916666666666667, 0.8125
), lift = c(11.2352693602694, 3.55786275006331, 3.16819206791352, 
3.26137418755803, 3.58751160631383, 3.17983983286908)), .Names = c("rules", 
"support", "confidence", "lift"), row.names = c(NA, 6L), class = "data.frame")

What I need is to structure these rules into a wide format, where for each item in each LHS part of the rules will have a designated column with a value of 1 (to indicate that rule has that item in its LHD part), the same goes for the RHS of the rules, e.g. taking the 2 first rules:

{liquor,red/blush wine} => {bottled beer} 0.0019 0.90 11.2
{curd,cereals} => {whole milk} 0.0010 0.91 3.6

The result should be a data frame that looks like:

'rules_id' 'lhs_liquor' 'lhs_red/blush wine' 'lhs_curd' 'lhs_cereals' 'rhs_bottled beer' 'rhd_whole milk' 'support' 'confidence' 'lift'
1 1 1 0 0 1 0 0.0019 0.90 11.2
2 0 0 1 1 0 1 0.0010 0.91 3.6 

As I am new to R and stack overflow please let me know if the question is not well defined Any help appreciated

Frank
  • 66,179
  • 8
  • 96
  • 180
Nir Regev
  • 135
  • 1
  • 2
  • 7
  • Your last paragraph, since it is not part of the question itself, would usually go down here, in the comments. – Frank Jun 17 '16 at 15:58
  • A long format would probably be more useful: `df %>% separate(col = rules, into = c('lhs', 'rhs'), sep = ' => ') %>% separate_rows(col = lhs, into = lhs, sep = ',') %>% gather(key = side, value = product, lhs, rhs) %>% mutate(product = gsub('[{}]', '', product))` – alistaire Jun 17 '16 at 17:26

2 Answers2

0

You could do something like

library(dplyr)
library(tidyr)
library(reshape2) 
rules %>% 
  mutate(id = seq_len(n())) %>% 
  separate(rules, c("lhs", "rhs"), "\\} => \\{") %>% 
  separate_rows(lhs) %>% filter(lhs!="") %>% 
  gather(value, var, lhs, rhs) %>% 
  mutate(var=paste(value, sub("}", "", var, fixed=T), sep="_")) %>%
  dcast(id+support+confidence+lift~var, fun.aggregate = function(x) (length(x)>0)+0L)
#   id     support confidence      lift lhs_beer lhs_blush lhs_bottled lhs_butter lhs_cereals
# 1  1 0.001931876  0.9047619 11.235269        0         1           0          0           0
# 2  2 0.001016777  0.9090909  3.557863        0         0           0          0           1
# 3  3 0.001728521  0.8095238  3.168192        0         0           0          0           1
# 4  4 0.001016777  0.8333333  3.261374        0         0           0          1           0
# 5  5 0.001118454  0.9166667  3.587512        1         0           1          0           0
# 6  6 0.001321810  0.8125000  3.179840        0         0           0          0           0
#   lhs_curd lhs_house lhs_jam lhs_keeping lhs_liquor lhs_napkins lhs_products lhs_red
# 1        0         0       0           0          1           0            0       1
# 2        1         0       0           0          0           0            0       0
# 3        0         0       0           0          0           0            0       0
# 4        0         0       1           0          0           0            0       0
# 5        0         0       0           0          0           0            0       0
# 6        0         1       0           1          0           1            1       0
#   lhs_soups lhs_wine lhs_yogurt rhs_bottled beer rhs_whole milk
# 1         0        1          0                1              0
# 2         0        0          0                0              1
# 3         0        0          1                0              1
# 4         0        0          0                0              1
# 5         1        0          0                0              1
# 6         0        0          0                0              1

Feel free to use tidyr's spread instead of reshape2's dcast - I still find dcast more untuitive...

lukeA
  • 53,097
  • 5
  • 97
  • 100
0

You can do this.

dummies <- function(x, prefix) {
    x.names <- unique(unlist(strsplit(x, ',')))
    out <- array(0L, c(nrow(df), length(x.names)), list(NULL, x.names))
    mapply(function(i, val) out[i, val] <<- 1L, 1:nrow(out), strsplit(x, ','))
    if (!missing(prefix))
        colnames(out) <- paste0(prefix, colnames(out))
    out
}

pat <- '[{](.*)[}] => [{](.*)[}]'

cbind(as.data.frame(
    cbind(dummies(sub(pat, '\\1', df$rules), 'lhs.'),
          dummies(sub(pat, '\\2', df$rules), 'rhs.'))),
    df[c('support','confidence','lift')])

Output as follows:

  lhs.liquor lhs.red/blush wine lhs.curd lhs.cereals lhs.yogurt lhs.butter
1          1                  1        0           0          0          0
2          0                  0        1           1          0          0
3          0                  0        0           1          1          0
4          0                  0        0           0          0          1
5          0                  0        0           0          0          0
6          0                  0        0           0          0          0
  lhs.jam lhs.soups lhs.bottled beer lhs.napkins lhs.house keeping products
1       0         0                0           0                          0
2       0         0                0           0                          0
3       0         0                0           0                          0
4       1         0                0           0                          0
5       0         1                1           0                          0
6       0         0                0           1                          1
  rhs.bottled beer rhs.whole milk     support confidence      lift
1                1              0 0.001931876  0.9047619 11.235269
2                0              1 0.001016777  0.9090909  3.557863
3                0              1 0.001728521  0.8095238  3.168192
4                0              1 0.001016777  0.8333333  3.261374
5                0              1 0.001118454  0.9166667  3.587512
6                0              1 0.001321810  0.8125000  3.179840
Ernest A
  • 7,526
  • 8
  • 34
  • 40
  • Awesome! very neat solution. It is a little out of my league to grasp that out and mapply statements, so I would appreciate if you could explain what's going on there, thanks anyway – Nir Regev Jun 17 '16 at 19:12
  • @NirRegev Actually, this solution is a little hacky. First problem: `dummies` has a hard-coded reference to `df`. The use of `mapply` here emulates `enumerate()` in Python, iterating over the elements of `1:nrow(out)` and `strsplit(x, ',')`. Also it relies on the `<<-` operator to make an assignment outside of the scope of the anonymous function. – Ernest A Jun 17 '16 at 20:16