TL;DR; Save all the parameters in a list, and add their L^n norm to the objective function before making gradient for optimisation
1) In the function where you define the inference
net = [v for v in tf.trainable_variables()]
return *, net
2) Add the L^n norm in the cost and calculate the gradient from the cost
weight_reg = tf.add_n([0.001 * tf.nn.l2_loss(var) for var in net]) #L2
cost = Your original objective w/o regulariser + weight_reg
param_gradients = tf.gradients(cost, net)
optimiser = tf.train.AdamOptimizer(0.001).apply_gradients(zip(param_gradients, net))
3) Run the optimiser when you want via
_ = sess.run(optimiser, feed_dict={input_var: data})