I am training a deep autoencoder (for now 5 layers encoding and 5 layers decoding, using leaky ReLu) to reduce the dimensionality of the data from about 2000 dims to 2. I can train my model on 10k data, and the outcome is acceptable. The problem arises when I am using bigger data (50k to 1M). Using the same model with the same optimizer and drop out etc does not work and the training gets stuck after a few epochs. I am trying to do some hyper-parameter search on the optimizer (I am using adam), but I am not sure if this will solve the problem.
Should I look for something else to change/check? Does the batch size matter in this case? Should I solve the problem by fine tuning the optimizer? Shoul I play with the dropout ratio? ...
Any advice is very much appreciated.
p.s. I am using Keras. It is very convenient. If you do not know about it, then check it out: http://keras.io/