4

I've got a MultiIndex with IDs and Dates, of the form:

MultiIndex(levels=[[196003, 196005, 196007, 196009, 196012, 196103, 196105, 196107, 196109, 196112, 196203, 196205, 196207, 196209, 196212, 196303, 196305, 196307, 196309, 196312, 196403, 196405, 196407, 196409, 196412, 201705, 201707, 201709, 201712, 201803, 201805, 201807, 201809, 201812], ['1959-07-01', '1959-07-02', '1959-07-06', '1959-07-07', '1959-07-08', '1959-07-09', '1959-07-10', '1959-07-13', '1959-07-14', '1959-07-15', '1959-07-16', '1959-07-17', '1959-07-20', '1959-07-21', '1959-07-22', '1959-07-23', ...]])

Both ID & Date are required to specify a row uniquely.

What I want to do is extract the first level of the index.

When I do df.index[0], I get a tuple of the form (196003, '1959-07-01')

What I want is a Series of keys of the form [196003, 196005, ...] for level 0.

I managed to get it with:

list(df[~df['ID'].duplicated()]['ID'].sort_values().reset_index()['ID'])

but I perceive this to be a messy & slow solution.

What's the pandas-way?

jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252
cjm2671
  • 18,348
  • 31
  • 102
  • 161

1 Answers1

5

I think you can use get_level_values with unique:

import pandas as pd

df = pd.DataFrame({'ID':[1,1,3],
                   'Dates':['2015-01-01','2015-01-01','2015-02-01'],
                   'C':[7,8,9]})
df['Dates'] = pd.to_datetime(df.Dates)
df.set_index(['ID', 'Dates'], inplace=True)
print (df)
               C
ID Dates        
1  2015-01-01  7
   2015-01-01  8
3  2015-02-01  9

print (df.index.get_level_values('ID').unique().tolist())
[1, 3]

#another a bit slowier solution
print (df.index.get_level_values('ID').drop_duplicates().tolist())
[1, 3]

Timings:

In [134]: %timeit (orig(df1))
1000 loops, best of 3: 1.54 ms per loop

In [138]: %timeit (df.index.get_level_values('ID').unique().tolist())
10000 loops, best of 3: 131 µs per loop

In [139]: %timeit (df.index.get_level_values('ID').drop_duplicates().tolist())
10000 loops, best of 3: 182 µs per loop

Code for timings:

len(df) = 3k:

import pandas as pd

df = pd.DataFrame({'ID':[1,1,3],
                   'Dates':['2015-01-01','2015-01-01','2015-02-01'],
                   'C':[7,8,9]})
df = pd.concat([df]*1000).reset_index(drop=True)
df['Dates'] = pd.to_datetime(df.Dates)
df.set_index(['ID', 'Dates'], inplace=True)
print (df)


df1 = df.copy()
df1.reset_index('ID', inplace=True)

def orig(df):

    return list(df[~df['ID'].duplicated()]['ID'].sort_values().reset_index()['ID'])

print (df.index.get_level_values('ID').unique().tolist())

print (orig(df1))

print (df.index.get_level_values('ID').drop_duplicates().tolist())
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252