I have a set of 5 data points (x=10,20,30,40,50
and its corresponding response values y
and noise
as s.d. of y
). These data are obtained from stochastic computer experiments.
How can I use DiceKriging in R to fit a kriging model for these data?
x <- seq(from=10, to=50, length=5)
y <- c(-0.071476,0.17683,0.19758,0.2642,0.4962)
noise <- c(0.009725,0.01432,0.03284, 0.1038, 0.1887)
Examples online with heterogeneous noise are pre-specified with coef.var
, coef.trend
and coef.theta
. It is unlikely that I can have a priori on these.
I have referred to the answer here. However, other references suggest adding the nugget parameter lambda is similar to adding homogeneous noise, which is not likely "individual errors".