I m curious if it is possible to define an objective function to be optimized to a specific value instead of just 'min' or 'max'. E.g., I have a function which I want to optimize to 100 having some constraints (omitted here). Objective function (to be optimized to 100):
f(x) 3.62*x1+5.19*x2
What would be the proper way to achieve my goal? Right now I can only define optimization to 'min' or 'max' which doesn't solve my goal.
The full code:
fn.obj <- c(3.62, 5.19, 7.29, 7.76, 3.82, 4.86, 4.03, 8.81, 9.14)
require(lpSolveAPI)
model <- make.lp(0,9)
lp.control(model, sense="max", verbose="full")
set.objfn(model, fn.obj)#-8333550.82)
add.constraint(model, c(70,70,-30,70,-30,-30,-30,-30,70), ">=", 0)
add.constraint(model, c(-60,-60,40,-60,40,40,40,40,-60), ">=", 0)
add.constraint(model, c(-20,-20,80,-20,-20,80,80,-20,-20), ">=", 0)
add.constraint(model, c(30,30,-70,30,30,-70,-70,30,30), ">=", 0)
add.constraint(model, c(-30,-30,-30,-30,70,-30,-30,70,-30), ">=", 0)
add.constraint(model, c(40,40,40,40,-60,40,40,-60,40), ">=", 0)
set.bounds(model, lower=c(39232,72989,90872,63238,49579,9626,158297,300931,160556), upper=c(49041,91237,113591,79048,61974,12033,197872,376164,200696))
set.type(model, 1:9,type = "integer")
res<-solve(model)
get.variables(model)
get.objective(model)
Result:
> get.variables(model)
[1] 49041 91237 113591 79048 61974 12033 197872 376164 200696
> get.objective(model)
[1] 8333551
The code works good when needs to maximize the objective function. But what if I want not to maximize but to optimize my objective function to e.g. 7000. So having the same constraints I want to find possible x1,..,x9 for my fn.obj -> 1000.