I am trying out the FANN PHP module and I was able to successfully run the example here http://php.net/manual/en/fann.examples-1.php
I modified it to be able to handle 5 inputs with an arbitrary function for output. I generated 1000 training data and run the training for the neural network. However, upon testing the output has duplicate results for different inputs.
This is a fragment of the training data. The function is $x = round($a + $b * $c / $d - $e, 2)
. so 35 + 33 * 31 / 25 - 48 = 27.92
1000 5 1
35 33 31 25 48
27.92
74 3 1 26 94
-19.88
7 62 86 48 71
47.08
31 73 68 94 95
-11.19
100 87 44 75 43
108.04
72 25 62 39 57
54.74
...
Here is my training code. I used FANN_LINEAR because the other activation functions have outputs of 0, 1, or -1. I read that FANN_LINEAR is unbounded. So this should be applicable, right?
<?php
$num_input = 5;
$num_output = 1;
$num_layers = 6;
$num_neurons_hidden = 4;
$desired_error = 0.0001;
$max_epochs = 500000;
$epochs_between_reports = 1000;
$ann = fann_create_standard($num_layers, 5, 5, 5, 5, 5, 1);
if ($ann) {
fann_set_activation_function_hidden($ann, FANN_LINEAR);
fann_set_activation_function_output($ann, FANN_LINEAR);
$filename = dirname(__FILE__) . "/xor.data";
if (fann_train_on_file($ann, $filename, $max_epochs, $epochs_between_reports, $desired_error))
fann_save($ann, dirname(__FILE__) . "/xor_float.net");
fann_destroy($ann);
}
Here is my testing code
<?php
$train_file = (dirname(__FILE__) . "/xor_float.net");
if (!is_file($train_file))
die("The file xor_float.net has not been created! Please run simple_train.php to generate it");
$ann = fann_create_from_file($train_file);
if (!$ann)
die("ANN could not be created");
$a = mt_rand(1, 100);
$b = mt_rand(1, 100);
$c = mt_rand(1, 100);
$d = mt_rand(1, 100);
$e = mt_rand(1, 100);
echo "Expecting $a $b $c $d $e => ".round($a + $b * $c / $d - $e, 2)."\n\n";
$input = array($a, $b, $c, $d, $e);
$calc_out = fann_run($ann, $input);
echo "Result: ".print_r($calc_out, true);
fann_destroy($ann);
This is where it gets weird. I tried running this code multiple times, but the result is the same
fann$ php test2.php
Expecting 94 67 95 40 85 => 168.13
Result: Array
(
[0] => 89.329223632812
)
fann$ php test2.php
Expecting 53 43 56 64 64 => 26.63
Result: Array
(
[0] => 89.329223632812
)
fann$ php test2.php
Expecting 18 85 57 94 30 => 39.54
Result: Array
(
[0] => 89.329223632812
)
Can you give me some pointers to achieve my goal, that is, to approximate an arbitrary function using FANN. Do I have to increase my training data? Increase layers, or nodes per layer? Do I use another activation function.