I am trying to write an efficient algorithm that counts the number of points inside a Sphere of Radius R and Dimension D. The sphere is always at the origin. Suppose we have a sphere of dimension 2 (circle) with radius 5.
My strategy is to generate all possible points within the first quadrant, so for the above example we know that (1,2) is in the circle, so must all + / - combinations of that point which is simply dimension squared. So for each point found in a single quadrant of an n-dimensional sphere we add 2 ^ dimension to the total count.
I'm not sure if there is a much more efficient solution to this problem but this is what I have so far in terms of implementation.
int count_lattice_points(const double radius, const int dimension) {
int R = static_cast<int>(radius);
int count = 0;
std::vector<int> points;
std::vector<int> point;
for(int i = 0; i <= R; i++)
points.push_back(i);
do {
for(int i = 0; i < dimension - 1; i++)
point.push_back(points.at(i));
if(isPointWithinSphere(point, radius)) count += std::pow(2,dimension);
point.clear();
}while(std::next_permutation(points.begin(), points.end()));
return count + 3;
}
What can I fix or improve in this situation ?