I am trying to do 10-fold-cross-validation in R. In each for run a new row with several columns will be generated, each column will have an appropriate name, I want the results of each 'for' to go under the appropriate column, so that at end I will be able to compute the average value for each column. In each 'for' run results that are generated belong to different columns than the previous for, therefore the names of the columns should also be checked. Is it possible to do it anyway? Or maybe it would be better to just compute the averages for the columns on the spot?
for(i in seq(from=1, to=8200, by=820)){
fold <- df_vector[i:i+819,]
y_fold_vector <- df_vector[!(rownames(df_vector) %in% rownames(folding)),]
alpha_coefficient <- solve(K_training, y_fold_vector)
test_points <- df_matrix[rownames(df_matrix) %in% rownames(K_training), colnames(df_matrix) %in% rownames(folding)]
predictions <- rbind(predictions, crossprod(alpha_coefficient,test_points))
}