I have written a simple program, that is intended to start a few threads. The threads should then pick a integer n from an integer array, use it to wait n and return the time t the thread waited back into an array for the results.
If one thread finishes it's task, it should pick the next one, that has not yet being assigned to another thread.
Of course: The order in the arrays has to be maintained, so that integers and results match.
My code runs smoothly as far I see. However I use one line of code block I find in particular unsatisfying and hope there is a good way to fix this without changing too much:
while(Thread.activeCount() != 1); // first evil line
I kinda abuse this line to make sure all my threads finish getting all the tasks done, before I access my array with the results. I want to do that to prevent ill values, like 0.0, Null Pointer Exception... etc. (in short anything that would make an application with an actual use crash) Any sort of constructive help is appreciated. I am also not sure, if my code still runs smoothly for very very long arrays of tasks for the threads, for example the results no longer match the order of the integer.
Any constructive help is appreciated.
First class:
public class ThreadArrayWriterTest {
int[] repitions;
int len = 0;
double[] timeConsumed;
public boolean finished() {
synchronized (repitions) {
return len <= 0;
}
}
public ThreadArrayWriterTest(int[] repitions) {
this.repitions = repitions;
this.len = repitions.length;
timeConsumed = new double[this.len];
}
public double[] returnTimes(int[] repititions, int numOfThreads, TimeConsumer timeConsumer) {
for (int i = 0; i < numOfThreads; i++) {
new Thread() {
public void run() {
while (!finished()) {
len--;
timeConsumed[len] = timeConsumer.returnTimeConsumed(repititions[len]);
}
}
}.start();
}
while (Thread.activeCount() != 1) // first evil line
;
return timeConsumed;
}
public static void main(String[] args) {
long begin = System.currentTimeMillis();
int[] repitions = { 3, 1, 3, 1, 2, 1, 3, 3, 3 };
int numberOfThreads = 10;
ThreadArrayWriterTest t = new ThreadArrayWriterTest(repitions);
double[] times = t.returnTimes(repitions, numberOfThreads, new TimeConsumer());
for (double d : times) {
System.out.println(d);
}
long end = System.currentTimeMillis();
System.out.println("Total time of execution: " + (end - begin));
}
}
Second class:
public class TimeConsumer {
double returnTimeConsumed(int repitions) {
long before = System.currentTimeMillis();
for (int i = 0; i < repitions; i++) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
long after = System.currentTimeMillis();
double ret = after - before;
System.out.println("It takes: " + ret + "ms" + " for " + repitions + " runs through the for-loop");
return ret;
}
}