I'm trying to use the MAPE as metric to evaluate the performance of a model.
In the case of LOOCV and parallel execution all works properly but If I use another resampling method I get this error:
Error in { : task 1 failed - “could not find function ”mape“”
Instead in serial execution this issue disappears.
The code below provides an example.
library(caret)
library(doParallel)
data("environmental")
registerDoParallel(makeCluster(detectCores(), outfile = ''))
mape <- function(y, yhat) mean(abs((y - yhat)/y))
mapeSummary <- function (data, lev = NULL, model = NULL) {
out <- mape(data$obs, data$pred)
names(out) <- "MAPE"
out
}
#LOOCV - parallel
trControlLoocvPar <- trainControl(allowParallel = T,
verboseIter = T,
method = "LOOCV",
summaryFunction = mapeSummary)
#LOOCV - serial
trControlLoocvSer <- trainControl(allowParallel = F,
verboseIter = T,
method = "LOOCV",
summaryFunction = mapeSummary)
#Bootstrapping - parallel
trControlBootPar <- trainControl(allowParallel = T,
verboseIter = T,
method = "boot",
summaryFunction = mapeSummary)
#Bootstrapping - serial
trControlBootSer <- trainControl(allowParallel = F,
verboseIter = T,
method = "boot",
summaryFunction = mapeSummary)
trControlList <- list(trControlLoocvSer,
trControlLoocvPar,
trControlBootSer,
trControlBootPar)
models <- lapply(trControlList,
function(control) {
train(y = environmental$ozone,
x = environmental[, -1],
method = "glmnet",
trControl = control,
metric = "MAPE",
maximize = FALSE)
})
My OS is El Capitan 10.11.4 and the version of caret is 6.0.62.