1

So what I am trying to do is to segment cursive handwritten English words into individual characters. I have applied a simple heuristic approach with artificial intelligence to do a basic over-segmentation of the words something like this:

Image with over segmentation

I am coding this in Matlab. The approach involves preprocessing, slant correction size normalization etc and then thinning pen strokes to 1 pixel width and identify the ligatures present in the image using column sum of pixels of the image. Every column with pixel sum lower than a threshold is a possible segmentation point. Problem is open characters like 'u', 'v, 'm' 'n' and 'w' also have low column sum of pixels and gets segmented. The approach I have used is a modified version of what is presented in this paper:

cursive script segmentation using neural networks.

Now to improve this arrangement I have to use a neural network to correct these over segmented points and recognize them as bad segmentations. I will write a 'newff' function for that and label the segments as good and bas manually but I fail to understand what should be the input to that neural network?

My guess is that we have to give some image data along with the column number at which possible segments are made(one segmentation point per training sample. The given image has about 40 segmentation points so it will lead to 40 training samples) and have it label as good or bad segment for training.

There will be just one output neuron telling us if the segmentation point is good or bad.

Can I give column sums of all the columns as input to the input layer? How do I tell it what the segmentation point for this training instance is? Won't the actual column number we have to classify as good or bad segment which is the most important value here drown in the sea of this n-dimensional input? (n being width of the image pixel-wise)

Abhay Sharma
  • 309
  • 5
  • 16

1 Answers1

0

Since it has been last asked, I am now using image features in vicinity of each segmented column my heuristic algorithm has returned. These features (like column sum pixel density close to the segmented column) is my input to the neural network with a single output neuron. Target vectors are 1 for a good segmentation point and 0 for a bad one.

Abhay Sharma
  • 309
  • 5
  • 16